Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.
Образующая равностороннего конуса наклонена к основанию под углом 60 градусов. Образующая равна двум радиусам: L = 2Rk.
Радиус его основания равен: Rk = H/√3.
Площадь основания Sok = πRk² = πH²/3.
Площадь Sбок боковой поверхности равна:
Sбок = πRL = π(H/√3)*(2H/√3) = (2/3)πH²/3.
Площадь S полной поверхности равна:
S = Sok + Sбок = πRL = πH²/3 + (2/3)πH²/3 = πH².
Цилиндр.
Радиус его основания равен: Rц = H/2.
Площадь основания Soц = πRц² = πH²/4.
Площадь Sбок боковой поверхности равна:
Sбок = 2πRцH = 2π(H/2)*H = πH².
Площадь S полной поверхности равна:
S = 2Soц + Sбок = πH²/2 + πH² = (3/2)πH².
ответ: отношение площадей их полных поверхностей равно 1:(1,5).