Прямые, соединяющие центр вписанной окружности с концами боковой стороны - это биссектрисы внутренних односторонних углов при параллельных основаниях и секущей боковой стороне. Сумма таких углов 180 градусов, сумма половин - 90 градусов, то есть эти прямые перпендикулярны. Поэтому радиус, проведенный в точку касания этой боковой стороны, является высотой к гипотенузе в прямоугольном треугольнике. Если меньший отрезок (на который точка касания делит гипотенузу-боковую сторону) принять за х, а больший за 4*х, то высота - среднее геометрическое этих отрезков.
Действительно, высота делит прямоугольный треугольник на два подобных между собой прямоугольных треугольника - и подобных исходному, конечно - по признаку равенства углов, поэтому
4*х/12 = 12/x;
(4*х)*х = 12^2 = 144; x^2 = 36; x = 6
Боковая сторона равна 30, а периметр 120
(сумма боковых сторон равна сумме оснований)
Рассмотрим один из треугоьников, полученных после проведения диагонали. он прямоугольный. синус меньшего угла равен отношению противолежащего катета г гипотенузе = корень из 3/2 . значит этот угол равен 60 гадусов, а значит другой равен 180-90-60=30 градусов. проведя вторую диагональ, мы получим два треугольника внутри него. Один из этих треугольников содержит меньший угол, образованный при пересечении двух диагоналей прямоугольника. Он будет равнобедренным (надеюсь, додумаешься почему), а значит его углы при основании равны. Основание этого треугольника содержит одну из сторон прямоугольника. меньший угол, образованный при пересечении диагоналей прямоугольника будет равен 180-30-30=60 градусов.