2) Если периметр ромба равен 32 см, то сторона ромба равна 32 : 4 = 8 см. Высота ромба на 1,7 см меньше чем сторона значит H = 8 - 1, 7 = 6,3 см Площадь ромба равна произведению стороны ромба и его высоты, то есть S = 8 * 6,3 = 50,4 см²
3) Площадь паралелограмма равна произведению стороны на высоту проведённую к этой стороне. С одной стороны площадь параллелограмма равна S = 16 * 5,9 Но с другой стороны площадь этого параллелограмма можно вычислить и так S = 4 * h Приравняем правые части этих равенств 4 * h = 16 * 5,9 h = 4 * 5,9 = 23,6 см Дополнительный вопрос: ответ - НЕТ
4) Площадь параллелограмма будет равна произведению AD на BK S = AD * BK = 7 * 3 = 21 см²
Пусть а и в - нижнее и верхнее основания трапеции АВСД. Находим боковую сторону трапеции. с = √(9² + ((40-14)/2)²) =√(81+169) = √250 = 15.81139 см. Радиус окружности, описанной около этой трапеции, равен радиусу окружности, описанной около треугольника АСД. Находим АС - это диагональ трапеции и сторона треугольника АСД. АС = √(9² + (14+((40-14)/2))²) = √(81 + 729) = √810 = 28.4605 см. Синус угла А равен: sin A = 9/√810. Тогда R = a/(2sin A) = √250/(2*(9/√810)) = √250*√810/(2*9) = = √ 202500/18 = 450/18 = 25 см. Ставь как лучший
Vцил =ПR2H
16 П=ПR2H=ПR22R
R3=16 П/2 П
R=2
Vшара=4/3 ПR2=4/3 П*22 = 4/3 П*4=16/3
ответ:16/3П