Если соединить центр окружности с вершинами А, В и С, то получим три равнобедренных треугольника.
1) прямоугольный с углом 90° при вершине О.
2) тупоугольный, углы при основании ВС равны по 15°. Центральный угол равен
180-2*15=150°
2)тупоугольный АОВ
Центральный угол в треугольнике АОВ равен
360=90-150=120 °
АВ отрезком, равным расстоянию от О до АВ, делится пополам.
угол АВО, в образовавшемся треугольнике при вершине В, равен 30°
Радиус в этом треугольнике - его гипотенуза.
Гипотенуза вдвое больше катета, противолежащего углу 30°
Она равна 2*6=12 см
Радиус окружности равен 12 см.
(4;0), (-4;0), (0;-4),(0;4)
Объяснение:
Оси координат - оси симметрии квадрата, но у квадрата возможны 4 оси симметрии. Это либо средние линии, либо диагонали. Т.к. Середина одной из сторон т.М(2;2), то оси симметрии - не средние линии, а диагонали, иначе середина стороны лежала бы на одной из осей и имела в координатах ноль. Значит ось х и у проходят через диагонали квадрата. Если половина значения х вершины =2, то х вершины =4, половина значения у вершины =2, то у вершины =4.
Вершинами квадрата являются точки (4;0), (-4;0), (0;-4),(0;4)