1. Высота треугольника — это отрезок, проведённый из вершины треугольника к противоположной ему стороне под ПРЯМЫМ УГЛОМ. На рисунке это отрезок СС1 (СС1 ⟂ АВ, поэтому это высота).
2. Биссектриса треугольника — это отрезок, проведённый из угла(вершины) треугольника и делящий этот угол на два равных угла. На рисунке это отрезок АА1 (угол САА1 равен углу ВАА1, поэтому АА1 - биссектриса).
3. Медиана треугольника — это отрезок, проведённый из вершины треугольника к противоположной стороне и делящий эту противоположную сторону на два равных отрезка. На рисунке это отрезок ВВ1 ( АВ1= СВ1, поэтому ВВ1 - медиана).
Надеюсь, нормально объяснила, удачи!
DC=6
Объяснение:
1. рассмотрим треугольник ADC, прямоугольный с углами 60 град. и 90 град., т.к. сумма углов в прямоуг. треуг. 180 град., то оставшийся угол равен 30 град.
2. есть теорема, что катет лежащий против угла в 30 град. равен 1\2 гипотенузы, соответственно если этот катет (BD) равен 2 по условию, то гипотенуза АВ в треугольнике АDC равна 4
3. рассмотрим треугольник АВС: в нем угол С равен 30 град (см. п. 1), катет АВ, лежащий против этого угла равен 4, значит (см. п.2) гипотенуза ВС равна 8
4. Т.к. ВС=8, ВD=2, то DС=8-2=6
по условию задачи основание пирамиды - равностороний треугольник. Пусть в нем сторона равна x, тогда
h^2=x^2+x^2/4
h^2=3x^2/4
h=x√3/2
x=2h/√3=2*12/√3=24/√3 =√192=8√3
площадь основания равна
s=ah/2
s=8√3*12/2=48√3
найдем высоту одной грани пирамиды
высота пирамиды проектирунется в центр основания O, причем высота основания делится в отношении 2:1 начиная от вершины, поэтому если AK-высота основания, то OK=12/3=4
то есть
h1^2=h^2+OK^2
h1^2=144+16=160
h1=4√10
Площадь одной боковой грани равна
s1=h1*a/2
s1=4√10*8√3/2=32√30
Общая площадь равна
SO=s+3s1=48√3+96√30