площадь многоугольника а кв. ед. Найдите площадь многоугольника, подобного данному, если отношение одной из сторон этого многоугольника к соответственной стороне данного многоугольника равно k : p
1 — неправильно. Бывают ситуации, что у них углы равны между собой, но длины их сторон разные, но они при этом пропорциональны. Такие треугольники называются подобными. 2 — неверно, такой отрезок называется радиусом, а диаметр — хорда, проходящая через центр окружности. 3 — верно, в равнобедренном треугольнике биссектриса, проведённая к основанию, является и медианой, и высотой этого треугольника. 4 — верно, многие об этом знают, если вы ,конечно, читали определение этой фигуры. 5 — верно, это все-таки смежные углы. 6 — неверно, в равнобедренном треугольнике он обязан лежать на противолежащей основанию вершине. 7 — нет, сумма смежных углов равна 180° и по определению острый угл — угл, который меньше угла в 90°. Значит угл смежный острому должен быть тупым. 8 — нет. Прямые могут иметь одну общую точку, но есть ещё прямые, которые совпадают между собой и прямые, не имеющие ни одной общей точки(параллельные прямые).
Задача решается через подобие треугольников В подобных треугольниках соответствующие стороны пропорциональны. Первый треугольник АВС, где: АВ - это высота столба, АВ=5,4 (м); АС - длина тени столба, ее нужно найти, АС=х (м); угол А=90°, угол В - это угол, под которым падает луч солнца. Второй треугольник КНР, где: КН - это рост человека, КН=170 (см)=1,7 (м); КР - это длина тени человека, КР=1 (м); угол К=90°; угол Н - это угол, под которым падает луч солнца. Прямоугольные треугольники АВС и КНР подобны по острому углу: уг.В=уг.Н; Из подобия треугольников следует соотношение: АВ/КН=АС/КР; 5,4/1,7=х/1; х=3 3/17 (м); ответ: 3 3/17
2 — неверно, такой отрезок называется радиусом, а диаметр — хорда, проходящая через центр окружности.
3 — верно, в равнобедренном треугольнике биссектриса, проведённая к основанию, является и медианой, и высотой этого треугольника.
4 — верно, многие об этом знают, если вы ,конечно, читали определение этой фигуры.
5 — верно, это все-таки смежные углы.
6 — неверно, в равнобедренном треугольнике он обязан лежать на противолежащей основанию вершине.
7 — нет, сумма смежных углов равна 180° и по определению острый угл — угл, который меньше угла в 90°. Значит угл смежный острому должен быть тупым.
8 — нет. Прямые могут иметь одну общую точку, но есть ещё прямые, которые совпадают между собой и прямые, не имеющие ни одной общей точки(параллельные прямые).