Площадь диагонального сечения в правильной усеченной четырехугольной пирамиды равна 20 см квадратных, а стороны основания 2 см и 8 см. найдите ее высоту. а) 4√2 см, б) 3√2 см, в)другой ответ(какой тогда? )
Правильная усеченная пирамида АВСДА1В1С1Д1, нижнее основание квадрат АВСД со стороной=10, верхнее-А1В1С1Д1 со стороной =6, в квадрате диагонали пересекаются под уголом 90, В1Д1 перпендикулярна А1С1, плоскость АА1С1С-плоскость сечения площадью 6*корень2, АА1С1С-равнобокая трапеция , А1С1=корень(2*А1Д1 в квадрате)=корень(2*36)=6*корень2, АС=корень(2*АД в квадрате)=корень(2*100)=2*корень10, площадь АА1С1С=1/2*(А1С1+АС)*АН, АН высота трапеции на АС=высота призмы, 6*корень2=1/2*(6*корень2+10*корень2)*АН, 12*корень2=16*корень2*АН, АН=12/16=3/4 объем=1/3*АН*(площадьАВСД+площадьА1В1С1Д1+корень(площадьАВСД*площадьА1В1С1Д1)=1/3*(3/4)*(10*10+6*6+корень(100*36))=1/4*(136+60)=49
Высота равнобедренной трапеции (BH), опущенная на большее основание (AD), делит его на больший отрезок (HD), который равен полусумме оснований, и меньшый (AH), который равен полуразности оснований. AH = (AD-BC)/2
Катет (AB) прямоугольного треугольника (△ABD) есть среднее геометрическое между гипотенузой (AD) и проекцией этого катета на гипотенузу (AH). AB = √(AD·AH)
Площадь диагонального сечения - трапеция, где основаниямы трапеции есть диагонали соответствующих оснований пирамиды
диагональ нижнего основания пирамиды равна d1=√2*a=8√2
верхнего d2=√2*b=2√2
площадь трапеции равна S=(a+b)*h/2
В нашем случае
20=(2√2+8√2)*h/2
40=10√2*h => h=40/10√2=4/√2=√8=2√2