Відповідь:
1. а) назвiть радіуси кола;
2. 5см(є пояснення та розписання на фото подивіться фото додаю)
3. Три радіуси однакові. І дві хорди однакові AB i BC. Так як кут ZBOC = 24º. То кут ZСВО=24° Трикутники ZСВО і АОВ однакові. Так як сума усіх кутів у трикутника 180°, то маємо вираз:180°-(24°+24°)=132°
Відповідь:АОВ=13132°;
4. Два розвязка .
5. Так як трикутник рівнобедрений, то бічні сторони дорівнюють 10 (6+4) і основа ділиться навпіл. Причому обидві половини основи дорівнюють 6, так як дотичні з однієї точки до кола рівні.
Тоді периметр дорівнює 2•10 +2•6 = 32см.
6. Все на фото!
Пояснення:
4. Якщо на одній прямій накреслить перше коло О₁ радіус якого дорівнює 22 см, то отримаємо відрізки перетинання кола з прямою АО₁ та О₁В. При цьму відрізки АО₁ = О₁В = r = 22 см.
На цій же прямій відкладем відрізок ВО₂, який дорівнює 42 см, та накреслим коло радіус якого дорівнює довжині відрізка ВО₂. Таким чином отримаємо другий відрізок О₂С.
При цьму відрізки ВО₂ = О₂С = r = 42 см.
Два кола торкаються, тоді відстань між центрами цих кіл дорівнює:
О₁В + ВО₂ = 22 + 42 =64 см
Відстань між центрами цих кіл О₁ та О₂ дорівнює 44 см.
Відстань між центрами цих кіл О₁ та О₂ дорівнює 44 см.
Накреслим коло О₃ з радіусом 32 см. Проведемо діаметр цього кола, та отримаємо відрізки DO₃ та О₃N, при цьому DO₃ = О₃N = r = 22 см.
На відрізку О₃N відкладемо відрізок NО₄ довжиною 42 см.
Накреслим коло с центром О₄ радіусом довжини відрізка = 42 см.
На відрізку DN отримаємо відрізки МО₄ та О₄N при цьому МО₄ = О₄N = r = 42см.
Два кола торкаються, тоді відстань між центрами цих кіл дорівнює.
Так як відрізок О₃О₄ належить відрізку O₃N, тоді можемо знайти відрізок О₃О₄.
О₃М = О₃N - MO₄ - O₄N
O₃M = 22 - 42 - 42 = 22 cм
O₃O₄ = O₃M + MO₄
O₃O₄ = 22 + 42 = 64 см
Відповідь:Відстань між центрами цих кіл О₃ та О₄ дорівнює 20 см.
Давайте позначимо точку, що знаходиться на відстані 16 см від прямої, як "P". Також, позначимо точку перетину похилих з прямою як "O", довжину першої похилої як "x", а довжину другої похилої як "y".
За умовою, кути між похилою і прямою складають 30° і 60°. Це означає, що ми маємо справу з 30-60-90 трикутниками. У такому трикутнику, відношення довжин сторін складає:
сторона проти 30° кута : сторона проти 60° кута : гіпотенуза = 1 : √3 : 2.
Тепер, залежно від положення точки "P", варіюються довжини похилих:
Якщо "P" знаходиться в середині гіпотенузи, то перший трикутник буде мати довжини сторін x : x√3 : 2x, і другий трикутник буде мати довжини сторін y : y√3 : 2y.
Якщо "P" знаходиться в межах однієї зі сторін гіпотенузи, то одна з похилих буде містити точку "P" і мати довжини сторін x : x√3 : 2x, а друга похила буде мати довжини сторін y : y√3 : 2y.
А якщо "P" знаходиться за межами гіпотенузи, то обидві похилі будуть мати довжини сторін x : x√3 : 2x і y : y√3 : 2y.
Знаючи це, ми можемо обчислити довжини похилих і їх проекцій на пряму, залежно від положення точки "P". Надайте точніше розташування точки "P", і я надам розрахунки для цього конкретного випадку.