М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ionа1
Ionа1
22.10.2020 01:48 •  Геометрия

Стороны основания треугольной пирамиды 9,10 и 17. все боковые грани наклонены к плоскости основания под углом 45 градусов. найдите объем пирамиды.

👇
Ответ:
zaika25901
zaika25901
22.10.2020

Это задача на формулы Герона для площади и радиуса вписанной окружности. Дело в том, что когда у боковых граней пирамиды одинаковый уогл наклона, то вершина пирамиды проектируется на основание в центр вписанной окружности. Показать это легко - проекция будет равноудалена от сторон основания. на расстояние, равное 

r = H*ctg(Ф), Н - высота пирамиды, Ф - двугранный угол при основании.

Далее, стороны a = 9, b = 10, c = 17, полупериметр p = 18, сомножители в формуле Герона p = 18, p - a = 9, p - b = 8, p - c = 1; площадь основания

(Sосн)^2 = 18*9*8*1 = (36)^2; Sосн = 36; r = Sосн/p = 2;

Раз угол Ф = 45 градусов, то r = H = 2;

V = Sосн*H/3 = 36*2/3 = 24;

4,4(16 оценок)
Открыть все ответы
Ответ:
haiskkd
haiskkd
22.10.2020
Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство:
К и М - середины боковых сторон трапеции ABCD, КМ - ее средняя линия.

Проведем прямую ВМ.
ВМ ∩ AD = N.

CM = MD по условию,
∠BCМ = ∠NDM как накрест лежащие при пересечении параллельных AN и ВС секущей CD,
∠BMC = ∠NMD как вертикальные, ⇒
ΔBMC = ΔNMD по стороне и двум прилежащим к ней углам.

Значит, ВМ = MN, то есть КМ - средняя линия треугольника ABN, следовательно КМ║AN, а значит и КМ║AD.

Из равенства треугольников следует, что
DN = BC = b, значит AN = AD + BC = a + b,
а KM = AN/2 = (a + b)/2 как средняя линия треугольника ABN.
4,7(38 оценок)
Ответ:
Xmitejr
Xmitejr
22.10.2020
Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство:
К и М - середины боковых сторон трапеции ABCD, КМ - ее средняя линия.

Проведем прямую ВМ.
ВМ ∩ AD = N.

CM = MD по условию,
∠BCМ = ∠NDM как накрест лежащие при пересечении параллельных AN и ВС секущей CD,
∠BMC = ∠NMD как вертикальные, ⇒
ΔBMC = ΔNMD по стороне и двум прилежащим к ней углам.

Значит, ВМ = MN, то есть КМ - средняя линия треугольника ABN, следовательно КМ║AN, а значит и КМ║AD.

Из равенства треугольников следует, что
DN = BC = b, значит AN = AD + BC = a + b,
а KM = AN/2 = (a + b)/2 как средняя линия треугольника ABN.
4,4(92 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ