Это задача на формулы Герона для площади и радиуса вписанной окружности. Дело в том, что когда у боковых граней пирамиды одинаковый уогл наклона, то вершина пирамиды проектируется на основание в центр вписанной окружности. Показать это легко - проекция будет равноудалена от сторон основания. на расстояние, равное
r = H*ctg(Ф), Н - высота пирамиды, Ф - двугранный угол при основании.
Далее, стороны a = 9, b = 10, c = 17, полупериметр p = 18, сомножители в формуле Герона p = 18, p - a = 9, p - b = 8, p - c = 1; площадь основания
Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство: К и М - середины боковых сторон трапеции ABCD, КМ - ее средняя линия.
Проведем прямую ВМ. ВМ ∩ AD = N.
CM = MD по условию, ∠BCМ = ∠NDM как накрест лежащие при пересечении параллельных AN и ВС секущей CD, ∠BMC = ∠NMD как вертикальные, ⇒ ΔBMC = ΔNMD по стороне и двум прилежащим к ней углам.
Значит, ВМ = MN, то есть КМ - средняя линия треугольника ABN, следовательно КМ║AN, а значит и КМ║AD.
Из равенства треугольников следует, что DN = BC = b, значит AN = AD + BC = a + b, а KM = AN/2 = (a + b)/2 как средняя линия треугольника ABN.
Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство: К и М - середины боковых сторон трапеции ABCD, КМ - ее средняя линия.
Проведем прямую ВМ. ВМ ∩ AD = N.
CM = MD по условию, ∠BCМ = ∠NDM как накрест лежащие при пересечении параллельных AN и ВС секущей CD, ∠BMC = ∠NMD как вертикальные, ⇒ ΔBMC = ΔNMD по стороне и двум прилежащим к ней углам.
Значит, ВМ = MN, то есть КМ - средняя линия треугольника ABN, следовательно КМ║AN, а значит и КМ║AD.
Из равенства треугольников следует, что DN = BC = b, значит AN = AD + BC = a + b, а KM = AN/2 = (a + b)/2 как средняя линия треугольника ABN.
Это задача на формулы Герона для площади и радиуса вписанной окружности. Дело в том, что когда у боковых граней пирамиды одинаковый уогл наклона, то вершина пирамиды проектируется на основание в центр вписанной окружности. Показать это легко - проекция будет равноудалена от сторон основания. на расстояние, равное
r = H*ctg(Ф), Н - высота пирамиды, Ф - двугранный угол при основании.
Далее, стороны a = 9, b = 10, c = 17, полупериметр p = 18, сомножители в формуле Герона p = 18, p - a = 9, p - b = 8, p - c = 1; площадь основания
(Sосн)^2 = 18*9*8*1 = (36)^2; Sосн = 36; r = Sосн/p = 2;
Раз угол Ф = 45 градусов, то r = H = 2;
V = Sосн*H/3 = 36*2/3 = 24;