сечение пирамиды, проходящее через середины сторон ас, вс и ам, будет прямоугольником (это можно доказать, использовав теорему о трех перпендикулярах) .
площадь прямоугольника равна s = ab, где а, b - стороны прямоугольника.
одна из сторон этого прямоугольника будет средней линией треугольника авс и поэтому равна половине стороны ав, значит равна 3
другая сторона прямоугольника будет средней линией треугольника амс и поэтому равна половине стороны мс и равна 2
s = 3*2 = 6
так что площадь сечения будет 6 кв. ед. ))
18_03_09_Задание № 6:
В окружности проведены две пересекающиеся хорды AB=7, CD=5. Точка их пересечения делит CD в отношении 2:3. В каком отношении эта точка делит хорду AB? (В ответе укажите отношение меньшего отрезка к большему).
РЕШЕНИЕ: Пусть О - точка пересечения хорд. Тогда, CO/DO=2/3=2x/3x.
Выразим CD: СD=CO+DO=2x+3x=5x=5, значит х=1. CO=2, DO=3
По теореме о пересекающихся хордах: АO*BO=CO*DO=2*3=6
С другой стороны АО+ВО=АВ=7. Выразим АО=7-ВО и подставим в теорему:
(7-ВО)*BO=6
BO^2-7BO+6=0
(BO-1)(BO-6)=0
ВО=1, тогда АО=6
или ВО=6, тогда АО=1
В любом случае отношение меньшей части к большей равно 1:6.
ОТВЕТ: 1:6
Верхний треугольник подобен треугольнику, который находится посередине. 10/4*3=7,5; 8:4*3=6; 4/4*3=3.