DA перпен-на (АВС), тогда DA перпендик AC; DC-высота тр-ка DBC (по теореме о трёх перпендикулярах: ВС перпенд-на АС-это прокция наклонной DС! Из прям-ого треугольника ДАС по теореме Пифагора DC^2=18^2+24^2=324+576=900=30^2; DC=30(cm) Из прям-ого тр-ка АВС: AB^2=AC^2+BC^2; BC=coren(26^2-24^2)=coren((26-24)(26+24)) =coren(2*50)=coren100=10(cm) S(бок)=S(ADC)+S(ABD)+S(BCD); все тр-ки прямоугольные, площадь равна половине произведения катетов!) S=(18*24)/2+(18*26)/2+(30*10)/2=9*24+9*26+15*10=216+234+150=600(cm^2)
В равностороннем треугольнике все углы равны 60° Т.к. AD - биссектриса, то угол DAC=углу BAD = 30° Равносторонний треугольник является также равнобедренным. В равнобедренном треугольнике биссектриса является также медианой и высотой. AD - высота расстояние от D до AC обозначим K. Расстояние от точки до прямой является перпендикуляром. Значит угол AKD = 90° В треугольнике AKD угол K=90° угол A=30° угол В=90-30=60° (сумма острых углов прямоугольного треугольника равна 90°) DK=6 см (по условию) Катет лежащий напротив угла 30° (A) равен половине гипотенузы DK равно половине AD AD = 2 · DK = 2 · 6=12 см
Задание 2
1) Все углы треугольника 180°
180° - (90° + 37°) = 180° - 127° = 53°
2) А = В так как Δ АВС - равнобедренный ( так как СD⊥ АВ)
180° - (90° + 45°) = 180° - 135° = 45°
3) По теореме "30° в прямоугольном треугольнике" АС = 2 ВС
АС = 15см значит ВС = 15 ÷ 2 = 7,5
4) По теореме "30° в прямоугольном треугольнике" СА = 2 АВ
АВ = 4 см значит СА = 4 * 2 = 8
5) АС = 8,4 см; ВС = 4,2 см значит АС = 2 ВС
По теореме "30° в прямоугольном треугольнике" ∠А = 30° и ∠С = 60° (180° - (90° + 30°) = 60°)
Задание 3 (если задача состоит в том чтобы придумать задачу то:)
Дано:
АС = 4 см
∠ВАD = 120°
Найти:
∠В - ?
АВ - ?
180° - 120° = 60° (∠ВАС)
180° - (90° + 60°) = 30°
По теореме "30° в прямоугольном треугольнике" АВ = 2 АС
АС = 4 см значит АВ = 4 * 2 = 8
ответ: ∠В = 30°, АВ = 8см