1 Рассмотрим треугольник AOC и треугольник BOD: Угол AOC = BOD (как вертикальные) AO=OB и CO=OD (по условию,т.к. точка является O - посередине) значит, треугольник AOC = равен треугольнику BOD (по двум сторонам и углу между ними) значит угол DAO = равен углу CBO(в равных треугольниках против равных сторон лежат равные углы)
2 Рассмотрим треугольник ABD и треугольник ADC: по условию, угол BDA = углу ADC сторона AD - общая и по условию угол BAD = углу DAC (т.к. AD - биссектриса) Значит, треугольник ABD = треугольнику ADC(по двум углам и стороне между ними) значит сторона AB=AC(т.к. в равных треугольниках против равных углов лежат равны стороны)
1) Прямые АС и ВС имеют общие точки с прямой АВ (а при их продлении пересекают АВ) по следствию из аксиомы о параллельных прямых "Если какая -либо прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую." Отсюда следует что если прямая а параллельна АВ , а АС и ВС пересекают АВ то они пересекают и прямую а тоже. 2) не может. Существует теорема "Если прямая, не проходящая ни через одну из вершин треугольника, пересекает одну из его сторон, то она пересекает только одну из двух других сторон." Следовательно , такая прямая может пересекать только 2 стороны треугольника.
Рассмотрим треугольник AOC и треугольник BOD:
Угол AOC = BOD (как вертикальные)
AO=OB и CO=OD (по условию,т.к. точка является O - посередине)
значит, треугольник AOC = равен треугольнику BOD (по двум сторонам и углу между ними)
значит угол DAO = равен углу CBO(в равных треугольниках против равных сторон лежат равные углы)
2
Рассмотрим треугольник ABD и треугольник ADC:
по условию, угол BDA = углу ADC
сторона AD - общая и по условию угол BAD = углу DAC (т.к. AD - биссектриса)
Значит, треугольник ABD = треугольнику ADC(по двум углам и стороне между ними)
значит сторона AB=AC(т.к. в равных треугольниках против равных углов лежат равны стороны)