Диагональ равнобокой трапеции перпендикулярна боковой стороне, а угол между боковой стороной и большим основанием трапеции равен α. Найдите радиус окружности, описанной около трапеции, если её высота равна h.
Пусть первый катет-х, второй-у, c-гипотенуза по т. пифагора (квадрат гипотенузы равен сумме квадратов катетов) с²=у²+х² система х-у=14 26²=у²+х² из первого уравнения выразим х х=14+у подставим во второе 26²=у²+(14+у)² 676=у²+14²+2*14*у+у² 676=2у²+196+28у 676-2у²-196-28у=0 480-2у²-28у=0 (делим все на (-2)) у²+14у-240=0- это приведенное уравнение по т.виета y₁+y₂=-14 y₁*y₂=-240 y₁=-24 (не подходит, <0) y₂=10 cm подставим то, что у нас получилось в подстановку х=14+10 х=24 cm площадь (произведение катетов деленное на 2) S=xy/2 S=24*10/2 S=120 cm²
Рисунок. Изобразим схему фигуры, ограниченной линиями у=х²-1, у=0, х=2. Получили фигуру, состоящую из 2-х частей. АВС ограничена отрицательной частью функции, ее площадь выразится формулой S= - (F(1)-F(-1)), площадь фигуры СМК найдем как S= (F(2)-F(1). Общая площадь равна сумме площадей фигур АВС и СКМ найдем первообразную для функции у=х²-1, F(X)=x³/3-x+C найти площадь фигуры АВС, S= - (F(1)-F(-1))=-(1/3-1+1/3-1)=4/3 Площадь СКМ S=F(2)-F(1)+8/3-2-1/3+1=4/3 4/3+4/3=8/3=2 2/3 ответ: 8/3
по т. пифагора (квадрат гипотенузы равен сумме квадратов катетов)
с²=у²+х²
система
х-у=14
26²=у²+х²
из первого уравнения выразим х
х=14+у
подставим во второе
26²=у²+(14+у)²
676=у²+14²+2*14*у+у²
676=2у²+196+28у
676-2у²-196-28у=0
480-2у²-28у=0 (делим все на (-2))
у²+14у-240=0- это приведенное уравнение
по т.виета
y₁+y₂=-14
y₁*y₂=-240
y₁=-24 (не подходит, <0)
y₂=10 cm
подставим то, что у нас получилось в подстановку
х=14+10
х=24 cm
площадь (произведение катетов деленное на 2)
S=xy/2
S=24*10/2
S=120 cm²