1
Объяснение:
Для решения данной задачи примем катеты за неизвестные. Пусть они равны a и b соответственно. Тогда согласно условиям задачи составим систему уравнений и решим ее, вычтя из первого уравнения второе:
система выражений a в степени 2 плюс b в степени 2 =49,(a минус 4) в степени 2 плюс b в степени 2 =25 конец системы . равносильно система выражений a в степени 2 плюс b в степени 2 =49, 8a=40 конец системы . \underset{b больше 0}{\mathop{ равносильно }} система выражений a=5,b=2 корень из 6 . конец системы .
Таким образом, первоначально горка была высотой 5 м и длиной 2 корень из 6 \approx 4,9 м. После уменьшения горки, ее параметры стали равны 1 м и 4,9 м соответственно.
1) если в основании прямоугольник со сторонами а и в, площадь боковой поверхности равна 2(a + b) * c = 2 *10 * 3 = 60 /см²/; площадь полной поверхности = S(бок) + 2S(осн) = 60 + 2 *6 * 4 = 60 + 48 = 108/ см²/
2) Если в основании прямоугольник со сторонами а и с, то площадь боковой пов. равна 2(a + с) * в=2*9*4=72/см²/ ; площадь полной поверхности = S(бок) + 2S(осн) 72+2*6*3=108/см²/,
3) если в основании прямоугольник со сторонами в и с, площадь боковой поверхности равна 2(в + с) * а = 2 * 7 * 6= 84/см²/; площадь полной поверхности = S(бок) + 2S(осн) = 84 + 2 *4 *3 = 84 + 24 = 108/ см²/
Конечно, площадь полной поверхности не менялась оттого, что мы меняли основания.