Точка А переходит в точку С по одной окружности, а точка В в точку Д по другой окружности, но чтобы это происходило одновременно, то есть отрезок АВ переходил в СД, окружности должны быть концентрическими (иметь общий центр). Точки А и С лежат на одной окружности, значит АС - её хорда. Одновременно ВД - хорда другой окружности. Из школьного курса известно, что диаметр, перпендикулярный к хорде, делит её пополам, обратным следствием чего является то, что срединный перпендикуляр, восстановленный к хорде, проходит через центр окружности. Восстановив срединные перпендикуляры к хордам АС и ВД получим точку их пересечения. Это и будет центр двух окружностей или центр поворота.
Окружность, вписанная в треугольник ABC, площадь которого равна 66, касается средней линии, параллельной стороне BC. Известно что BC = 11. Найдите сторону AB ––––––––––– Обозначим среднюю линию КМ. По свойству средней линии КМ=ВС:2=11:2=5,5 ВКМС - описанный вокруг окружности четырехугольник. Суммы противоположных сторон описанного четырехугольника равны ( свойство). ⇒ КВ+МС=КМ+ВС КВ+МС=5,5+11=16,5 К и М делят АВ и АС пополам, ⇒ АВ=2₽•KB АC-2•MC АВ+АС=2•(КВ+МС)=33 Пусть АВ=х, тогда АС=33-х Периметр ∆ АВС=АВ+АС+ВС=33+11=44
Формула Герона для вычисления площади треугольника: ––––––––––––––––– S=√[р(р-АВ)(р-АС)(р-ВС)] где р - полупериметр
р=44:2=22⇒ –––––––––––––––––––––– 66=√[22•(22-х){22-(33-x)}(22-11) Выведем из-под корня 11: 6•11=11√[2•(22-x)(x-11)] Сократим обе части на 11 и возведем их в квадрат: 36=2•(22-х)•(x-11) ⇒ x²-33 x+260=0 Решив квадратное уравнение, получим два корня: х₁=20; х₂=13. Оба коря подходят. Для данного в приложении рисунка АВ=13 ( а АС=20). Если поменять местами В и С, АВ будет равно 20.