Стержень - это цилиндр высотой Н и радиусом R. Квадратные гайки - это прямоугольный параллелепипед высотой Н и основанием - квадрат со стороной а=12 см. Чтобы был минимальный расход материала, нужно прямоугольный параллелепипед вписать в цилиндр. Значит диаметр стержня D будет равен диагонали квадрата d: D=d=a√2=12√2. Объем стержня Vс=πR²H=πD²H/4=π*288H/4=72πH. Объем прям.параллелепипеда Vп=a²H=144H. Объем проделанного отверстия радиусом r=6/2=3: Vо=πr²H=9πH. Найдем отходы V=Vc-Vп+Vo=72πН-144Н+9πН=9Н(9π-16) Процент отходов от объема %=V*100/Vc=9Н(9π-16)*100/72πН=12,5(9π-16)/π=112,5-200/π≈112,5-63,69=48,81%
Радиус окружности, вписанной в прямоугольный треугольник, определяется по формуле: У треугольника, радиус которого в 2 раза больше, стороны тоже в 2 раза больше, что следует из вышеприведенной формулы: Подобие треугольников, на которые высота из прямого угла делит прямоугольный треугольник, вытекает из равенства взаимно перпендикулярных углов этих треугольников. Примем стороны треугольников, лежащих против прямых углов, равными х и 2х. Тогда гипотенуза заданного треугольника будет равна: Так как радиусы пропорциональны сторонам, то радиус заданного треугольника в раз больше радиуса, равного 2. ответ: радиус окружности, вписанной в данный треугольник, равен ≈ 4,472136.
Квадратные гайки - это прямоугольный параллелепипед высотой Н и основанием - квадрат со стороной а=12 см. Чтобы был минимальный расход материала, нужно прямоугольный параллелепипед вписать в цилиндр. Значит диаметр стержня D будет равен диагонали квадрата d:
D=d=a√2=12√2.
Объем стержня Vс=πR²H=πD²H/4=π*288H/4=72πH.
Объем прям.параллелепипеда Vп=a²H=144H.
Объем проделанного отверстия радиусом r=6/2=3:
Vо=πr²H=9πH.
Найдем отходы V=Vc-Vп+Vo=72πН-144Н+9πН=9Н(9π-16)
Процент отходов от объема %=V*100/Vc=9Н(9π-16)*100/72πН=12,5(9π-16)/π=112,5-200/π≈112,5-63,69=48,81%