Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Смотрите, всё довольно просто :) Объясню по моему чертежу. Мы рисуем отрезок АВ. Находим середину отрезка( для простоты и удобства, советую взять отрезок 4 см. Соответственно, 2 см и будет середина). У меня середина отрезка помечена зелёным цветом. Затем, ставим, где-нибудь рядом, точку М ( она красного цвета). Берём линейку, соединяем линейкой точку М и середину отрезка. Слабо проводим линию, чтобы она была немного дальше от середины. Отмеряем расстояние от точки М до середины отрезка. И отмечаем новую точку на этом расстоянии, от середины отрезка. Допустим F. Она и будет симметрична точке М
Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.