Площадь прямоугольного треугольника равна половине произведения его катетов.
Пусть угол С=90°, угол А=30°.
Тогда ВС=12•sin30°=6 см
АС=12•cos30°=6√3 см
S(∆ABC)=AC•BC:2=36√3:2=18√3 см²
Равновеликие части означает равные по площади, т.е. каждая равна половине площади данного треугольника⇒
S/2=9√3 см² площадь кругового сектора окружности с центром в вершине А.
Одна из формул площади сектора круга:
S=πr*α/360°
отсюда находим радиус по известным площади и углу α=30°:
9√3=π•r²/12
r=√(108√3/π)=7,716 см
дано: решение:
ав = 18 см
∠вао = 60°
см. рис. δвоа - прямоугольный
т.к. ∠вао = 60°, то ∠аво = 30°
найти: h - ?
ао - катет прямоугольного треугольника,
s₀ - ? лежащий напротив угла в 30°. => ао = ав: 2 = 9 (см)
тогда:
h = √(ab²-ao²) = √(324-81) = √243 = 9√3 (см)
площадь
основания:
s₀ = πr² = π*ao² = 81π ≈ 254,34 (см²)
ответ: 9√3 см; 254,34 см²