1. Средние линии относятся как 1:2:4, а периметр равен 28 см. Найдите стороны .
2. Медианы ABC пересекаются в точке О. Через точку О проведена прямая, параллельная стороне АС и пересекаю-щая стороны АВ и ВС в точках Е и F соответственно. Найдите EF, если сторона АС равна 36 см.
3. В прямоугольном ABC (С = 90°) АС = 8 см, ВС =8 см. Найдите угол В и гипотенузу АВ.
По условию СС₁║DD₁. Через две параллельные прямые можно провести плоскость, притом только одну. Отрезок СD лежит в этой плоскости, С₁D₁- проекция отрезка СD на плоскость β ⇒ С₁, Е₁ и D₁ лежат в на одной прямой.
Проведем через D параллельно C₁D₁ прямую до пересечения с продолжением СС₁ в т.С₂. Продолжим ЕЕ₁ до пересечения с DC₂ в точке Е₂. Прямые C₁C₂║E₁E₂║D₁D; C₂D₂║C₁D₁ ⇒ C₁C₂=E₁E₂=D₁D=√3. Домножив числитель и знаменатель значения СС₁ на √3, получим СС₁=2√3 Отрезок СС₂=СС₁+С₁С₂=2√3+√3=3√3 . Точка Е - середина CD, ЕЕ₂║СС2 ⇒ отрезок ЕЕ₂ - средняя линия треугольника СС₂D и равна половине СС₂. ЕЕ₂=3√3:2=1,5√3 Отсюда EE₁=ЕЕ₁-Е₁Е₁=1,5 √3-√3=0,5√3 или иначе ЕЕ₁=√3/2 см