Дан тупоугольный треугольник ABC. Точка пересечения D серединных перпендикуляров сторон тупого угла находится на расстоянии 32,3 см от вершины угла B. Определи расстояние точки D от вершин A и C.
Угол А вписанный, лежащий на одной дуге с центральным ВОС, следовательно ВОС=50*2=100 градусов (вписанный угол равен половине дуги, на которую он опирается, а центральный равен дуге, на которую он опирается, следовательно вписанный угол равен половине центрального, опирающегося на ту же дугу) дуга СВ=100 градусов из выше сказанного, следовательно дуга АС+дуга АВ=360-100=260 градусов (общая градусная мера окружности равна 360). Всего частей у нас из отношения 3:2 3+2=5, следовательно одна часть равна 260/5=52. Дуга АВ= 3 части=3*52=156 градусов, следовательно угол С, лежащий на ней равен 156/2=78 градусов. Дуга АС=2 части=2*52=104 градуса, следовательно угол В, лежащий на ней равен 104/2=52 градуса, или 180-50-78=52 градуса (сумма углов в треугольнике равна 180, а углы А и С нам известны, остается только отнять их).
№1 КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам. №2 Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град. ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2 2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС