1. Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований и лежит на средней линии.
Пусть верхнее основание равно х, тогда:
3 · ((48-x) : 2) = (48+х):2,
где в левой части - 3 - количество равных отрезков, согласно условию задачи, а в правой части - та же самая длина средней линии трапеции, выраженная через длины её оснований.
Находим х:
144 - 3х = 48 + х
4 х = 96
х = 24 см.
2. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
Сумма оснований трапеции:
48 + 24 = 72 см.
Следовательно, сумма боковых сторон также равна 72 см.
Находим периметр трапеции:
72 см (сумма длин оснований) + 72 см (сумма длин боковых сторон) = 144 см
Прямой называется призма, боковое ребро которой перпендикулярно плоскости основания. Все боковые грани прямой призмы прямоугольники.Основание призмы тоже прямоугольник (дано). а). Искомая линия пересечения - перпендикуляр dh, опущенный на прямую bd1, так как прямая bd1 и точка d принадлежат плоскости bb1d1b, а через точку можно провести только один перпендикуляр к прямой. Он и будет принадлежать обеим плоскостям, то есть являться линией пересечения двух плоскостей. б). Прямые ас и b1d1 лежат в параллельных плоскостях, значит расстояние между ними равно расстоянию между этими плоскостями, то есть равно высоте данной нам призмы. Диагональ bd основания призмы (прямоугольника) находится по Пифагору: bd=√(ab²+ad²)=√(25+11) = 6. Диагональ прямой призмы bd1 равна по Пифагору: bd1=√(ab²+ad²+dd1²)= √(25+11+144)=√180=6√5. Итак, мы имеем прямоугольный треугольник bdd1, в котором dh является высотой, опущенной из прямого угла на гипотенузу. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. Следовательно, искомый угол <bdh равен углу <dd1b, тангенс которого равен отношению противолежащего катета bd к прилежащему катету dd1, то есть tg<bdh=bd/dd1 =6/12 = 0,5. ответ: тангенс искомого угла равен 0,5.
144 см
Объяснение:
1. Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований и лежит на средней линии.
Пусть верхнее основание равно х, тогда:
3 · ((48-x) : 2) = (48+х):2,
где в левой части - 3 - количество равных отрезков, согласно условию задачи, а в правой части - та же самая длина средней линии трапеции, выраженная через длины её оснований.
Находим х:
144 - 3х = 48 + х
4 х = 96
х = 24 см.
2. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
Сумма оснований трапеции:
48 + 24 = 72 см.
Следовательно, сумма боковых сторон также равна 72 см.
Находим периметр трапеции:
72 см (сумма длин оснований) + 72 см (сумма длин боковых сторон) = 144 см
ответ: 144 см