М∈АВ
N∈BC
P∈AC
И делит стороны так, что
MB=2AM, NC=2BN, AP=2PC, т.е. соотношение1:2
Отношение площадей треугольников имеющих равный (общий) угол равно произведению сторон содержащих этот угол. Доказательство этого факта приводить не буду. Желающие найдут (сделают :-) сами.
Рассмотрим, исходя из этого, треугольники АВС и AMP.
S(ABC)/S(AMP) = (AB*AC)/(AM*AP) (1)
Примем меньший отрезок АМ за 1 часть, соответственно MB будет 2 части.
Т.е. AB/AM = 3/1, AC/AP=3/2, подставим эти соотношения в выражение (1) для соотношения площадей треугольников получим:
S(ABC)/S(AMP) = (3*3)/(1*2) = 9/2, т.е. S(AMP)=(2/9)*S(ABC) =(2/9)*S
Можно провести аналогичные рассуждения для оставшихся треугольников, но учитывая соотношения сторон легко :-) заметить, что площади всех маленьких треугольников AMP, MBN, PNC равны и равны (2/9)*S.
Т.о. искомая площадь треугольника MNP будет равна
S-3*((2/9)*S) = 1/3 S, одной трети площади ABC, равной S.
И ещё. В чем смысл подобных задач? В том что ты учишься находить решение.
Сегодня это геометрия. Через годы это будут другие, более серьезные проблемы. На этом сайте ты научишься только списывать. Скачай себе
"Гордин-Планиметрия 7-9" и реши хотя бы одну задачу на соотношение площадей. Тогда я буду считать, что не зря потратил время, набивая всё это.
С тебя "69" :-)
Сколько плоскостей можно провести через 2 точки?
ответ: бесчисленное множество.
Объяснение: Из аксиом планиметрии: Через любые две точки можно провести прямую и притом только одну.
Через две данные точки – ( А и В )– проходит единственная прямая (а ) (см. рисунок).
Из аксиом стереометрии: Через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.
Через точки (А и В) лежащие на прямой ( а ), и через каждую точку ( b, c, d…..n ), не лежащую на этой прямой, проходит одна плоскость ( b, c, d…..n ). В пространстве точек, не лежащих на данной прямой. бесчисленное множество, следовательно, через две точки можно провести прямую и провести бесчисленное множество плоскостей.
Для наглядности можно представить себе сферу и плоскости сечения, проходящие через её диаметр и каждую точку на её поверхности.