ABCD - выпуклый четырехугольник, в нем по условию ∠BAC=∠ACD, а это внутренние накрест лежащие при прямых СD и АВ, и секущей АС, значит, по признаку параллельности прямых СD и АВ параллельны. ВC=AD.
Четырехугольник окажется вписанным, если сумма противоположных углов равна 180°. Параллелограмм, который вписан в окружность, может быть только прямоугольником. /как частный случай прямоугольника - квадрат./
А если стороны АD и ВС не параллельны, то это будет равнобедренная трапеция.
Равнобедренной трапецией этот четырехугольник будет,
если добавить условия
1) AB≠CD; /верхнее и нижнее основания у трапеции различные./ и
6)BC не параллелен AD;/боковые стороны не параллельны/, 7) ∠BCA≠∠CAD; /при равенстве этих углов противолежащие углы равны, в сумме 180°, тогда трапеция не получим./
Если же добавить условие 8)∠ABC=90∘ то и угол С станет тоже прямым, поскольку ВС будет перпендикулярно к одной из двух параллельных прямых АВ, он окажется перпендикуляром и к СD, 3)AD>AB; значит, четырехугольник окажется прямоугольником. около него тоже можно описать окружность, центр ее - точка пересечения
диагоналей. если не учитывать 3)AD>AB, то можем допустить, что эти смежные стороны равны, тогда из прямоугольника получим квадрат.
наконец, окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. Но данных в условии не хватает для этого.
ответ 1), 6), 7, или 8)
В основании правильной четыреухгольной пирамиды SABCD лежит квадрат ABCD, боковые грани — равные треугольники с общей вершиной S. Высота пирамиды Н опускается в центр пересечения O диагоналей квадрата основания из вершины пирамиды S.
Угол между боковой гранью и плоскостью основания пирамиды является углом между высотой h(бок) боковой грани (перпендикуляром SM, опущенным из вершины S пирамиды к основанию AB равнобедренного треугольника боковой грани) и плоскостью основания.
В прямоугольном треугольнике SOM, SM - гипотенуза, SO=H = катет, противолежащий углу 30 градусов, MO - катет, прилежащий углу 30 градусов. МО = половине стороны квадрата основания пирамиды.
МО = AB/2 = 6/2 = 3 см
Катет, противолежащий углу 30 градусов, равен половине гипотенузы⇒ SM = 2H
по теореме Пифагора:
H² + MO² = (2H)²
H² + 9 = 4H²
3H² = 9
H² = 3
H = √3 см
В прямоугольном треугольнике SOA, боковое ребро пирамиды SA - гипотенуза, SO=H=√3 - катет, противолежащий искомому углу, AO - катет, прилежащий искомому углу. AO= половине диагонали квадрата основания пирамиды.
AO = AB*√2 / 2 = 6 * √2 / 2 = 3√2 см
Тангенс искомого угла - отношение противолежащего катета к прилежащему.
√3 / 3√2 = 1 / √6 ≈ 0.4082, что приблизительно соответствует углу 22°12' (по таблице Брадиса)
Угол между боковым ребром и плоскостью основания пирамиды приблизительно равен 22 градуса 12 минут.
Объем правильной четырехугольной пирамиды равен:V = 1/3 * H * a²
V = 1/3 * √3 * 6² = 12√3 см²