Смотри, у нас есть треугольник, так как его основание делется как 1 к 5, то 1 это x, а 5 это 5x, далее нам нужно подставить все известное в форумлу площади треугольника, S=1/2*a*h, 36=1/2*6x*h (6x потому что 5x+x=6x), как видно нам надо найти высоту,H=12/x; теперь нам нужно найти площадь KBC, для этого подставим все в формулу площади, только теперь не 6x а 5x так как основание поменялось. S=1/2*5x*(12/x); Итого 30 cm^2.
Пусть даны треугольники ABC и A'B'C', при этом углы A, A' прямые, тогда BC, B'C' — гипотенузы, по условию, BC=B'C'. Пусть также ∠B=∠B'=β. Докажем, что ΔABC=ΔA'B'C'.
Сумма углов любого треугольника равна 180 градусам. Поскольку наши треугольники прямоугольные, сумма их острых углов равна 90 градусам. Таким образом, ∠B+∠C=90°, ∠C=90°-∠B=90°-β. Аналогично, ∠C'=90°-∠B'=90°-β. Следовательно, ∠C=∠C'. Это значит, что ΔABC и ΔA'B'C' равны по гипотенузе и двум прилежащим к ней острым углам (BC=B'C', ∠B=∠B', ∠C=∠C'), что и требовалось доказать.
Смотри, у нас есть треугольник, так как его основание делется как 1 к 5, то 1 это x, а 5 это 5x, далее нам нужно подставить все известное в форумлу площади треугольника, S=1/2*a*h, 36=1/2*6x*h (6x потому что 5x+x=6x), как видно нам надо найти высоту,H=12/x; теперь нам нужно найти площадь KBC, для этого подставим все в формулу площади, только теперь не 6x а 5x так как основание поменялось. S=1/2*5x*(12/x); Итого 30 cm^2.
АК:КС=1:5, следовательно КС=5АК АК=х, КС=5х S(ABC)=AC*h/2=(x+5x)*h/2=6x*h/2 S(ABC)=36 (см кв)-по условию 6х*h/2=36 3x*h=36 x*h=12 S(KBC)=KC*h/2=(5x)*h/2=5*(x*h)/2=5*12/2=60/2=30(см кв) ответ: 30 см кв