5)
<DCK= 180°- (<CDK+<DKC) (тк сумма всех углов треугольника равна 180°)
<DCK= 180°- (28°+75°)=77°
<DKE= 180° - DKC (тк <DKE и <DKC - смежные)
<DKE= 180°-75°= 105°
<KDE= 28° (по рисунку)
<DEK= 180°- (<DKE+<KDE) (тк сумма всех углов треугольника равна 180°)
<DEK= 180°- (105°- 28°)= 47°
ответ: <DCK= 77°, <DKE= 105°, <KDE= 28°, < DEK= 47°
6)
В ^ABC стороны при основании равны => ^ABC равнобедренный => углы при основании равны.
1. 180°-40°= 140°
2. 140°:2°=70°
ответ: <A= 70°, <C= 70°
Объяснение:
обозначения :
< - угол
=> - следовательно
^ - треугольник
Для начала найдем неизвестные угол и стороны ∆ АКЕ. Сумма углов треугольника 180° => угол КАЕ=180°-(54°+60°=66°
По т.синусов АЕ=АК•sin54°/sin60°. KE=AK•sin66°/sin60°
sin60°=0.8660; sin54°= 0.8090; sin66°=0.9135
AE=20•0,8090/0,8660=18,683≈18,7 см; KE=20•0,9135/0,8660=21,097≈ 21,1 см
Стороны и углы треугольника ВСD имеют те же значения, что и соответствующие углы и стороны ∆ АКЕ, но в условии не указано, какие именно элементы двух треугольников равны. Если в ∆ ВСD сторона ВС=АК, и ∠D=∠Е, то ∠В=∠А=66°,∠С=∠К=54°, ВС=20 см, ВD=AE≈18,7= см, CD=KE≈21,1 см