В треугольнике из середины одной из сторон к двум другим сторонам проведены перпендикуляры, которые образуют равные углы с данной стороной. Докажите, что треугольник равнобедренный
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
(х-8)(-16+6)-(y-9)(-12+6)+(z-6)(36-48)=0. Или -10x+6y-12z+46=0. 5x-3y+6z-23=0 - общее уравнение плоскости АВС с коэффициентами А=5, В=-3, С=6, D=-23.
Подставим данные трех наших точек плоскости АВD: |x-8 2-8 7-8| |x-8 -6 -1| |y-9 1-9 6-9| = 0. Или |y-9 -8 -3| = 0. |z-6 7-6 1-6| |z-6 1 -5| Раскрываем определитель по первому столбцу, находим уравнение плоскости ABD : |-8 -3| |-6 -1| |-6 -1| (х-8)*| 1 -5| - (y-9)*| 1 -5| +(z-6)*|-8 -3| =0.
(х-8)(40+3)-(y-9)(30+1)+(z-6)(18-8)=0. 43x-31y+10z-125=0 - общее уравнение плоскости АВD с коэффициентами А=43, В=-31, С=10, D=-125. Угол между плоскостями определяем по формуле: Cosα=|A1*A2+B1B2+C1C2|/(√(A1²+B1²+C1²)*√(A2²+B2²+C2²) или Cosα=|215+93+60|/(√(25+9+36)*√(43²+31²+10²)= 368/451=0,816. Угол равен ≈35,3°.
2. Уравнение прямой АВ по двум точкам: (x-1)/(4-1)=(y-6)/(5-6) или -x+1=3y-18 или y= (-1/3)*x+19/3 y= (-1/3)*x+19/3 (уравнение прямой с угловым коэффициентом). Угловой коэффициент k1=-1/3 (условие перпендикулярности прямых: k2=-(1/k1). Точка С(2;-2). Уравнение прямой, перпендикулярной прямой АВ, проходящей через точку С : Y-Yc=3*(X-Xc). Подставляем наши значения: Y+2=3*(X-2) или 3Х-Y-8=0. - уравнение прямой Р. Координаты точки пересечения прямых АВ и Р найдем, решив систему уравнений этих прямых: АВ: х+3y=19 и P: 3x-y=8. Отсюда х=4,3 y=4,9 ответ: К(4,3;4,9).
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см