AK=AM=6 см,
BF=BM=8 см,
CK=CF=x см.
2) AB=AM+BM=6+8=14 см,
AC=AK+CK=(6+x) см,
BC=BF+CF=(8+x) см.
3) По теореме Пифагора:
\[A{C^2} + B{C^2} = A{B^2}\]
\[{(6 + x)^2} + {(8 + x)^2} = {14^2}\]
\[36 + 12x + {x^2} + 64 + 16x + {x^2} = 196\]
\[2{x^2} + 28x - 96 = 0\]
\[{x^2} + 14x - 48 = 0\]
D=1{4^2}-4*1*(-48)= 1552
x= sqrt(97)-7
Второй корень не подходит по смыслу задачи. Значит, CA=14 см, AC=8+sqrt(97)-7 см, BC=6+sqrt(97)-7 см.
OM=OK=OF=sqrt(97)-7
4) Площадь
S=AM*OM+AK*OK+OK*OF=8*x+6*x+{x^2}
S=(14+x)*x
S=(14+sqrt(97)-7)*(sqrt(97)-7)
S=(sqrt(97)+7)*(sqrt(97)-7)
S=97-{7^2}
S=48 с{м^2}
Проведём из точки D отрезок DE, параллельный диагонали АС, тогда ∠BDE = ∠BAE = 90° , BE - диаметр окружности ⇒ АСDE - равнобедренная трапеция ⇒ CD = AЕ
В ΔВАЕ по т. Пифагора: AB² + AE² = BE² ⇒ AB² + CD² = ( BK² + AK² ) + ( CK² + KD² ) = BE² = ( 2R )² = 4R²
Значит, BK² + AK² + CK² + KD² = 4R²
илиПостроим диаметр окружности ВЕ, тогда ∠ВАЕ = 90°
∠ВСА = ∠ВЕА - как вписанные углы, опирающиеся на общую дугу АВ
Из прямоугольных треугольников ВКС и ВАЕ следует, что ∠CBD = ∠ABE ⇒ CD = AE - как хорды, стягивающие равные дуги CD и АЕ
В ΔВАЕ по т. Пифагора: AB² + AE² = BE² ⇒ AB² + CD² = ( BK² + AK² ) + ( CK² + KD² ) = BE² = ( 2R )² = 4R²
Значит, BK² + AK² + CK² + KD² = 4R²
▪ Теорема синусовПусть ∠CDК = α , тогда ∠KCD = 90° - α
В ΔBCD по т. синусов: ВС/sinα = 2R ⇒ BC = 2R•sinα
В ΔACD по т. синусов: AD/sin( 90° - α ) = 2R ⇒ AD = 2R•cosα
BC² + AD² = ( 2R•sinα )² + ( 2R•cosα )² = 4R²•sin²α + 4R²•cos²α = 4R²•( sin²α + cos²α ) = 4R²
Значит, BK² + CK² + AK² + KD² = 4R²