Площадь ромба равна 120 см², а одна из диагоналей больше другой на 14 см. Найдите длину неизвестной диагонали.
▔ ▔ ▔
★☆★ Чертёж смотрите во вложении ★☆★
Дано:Четырёхугольник ABCD — ромб.
S(ABCD) = 120 см².
AC и BD — диагонали.
АС = BD+14 см.
Найти:BD = ?
Решение:Пусть BD = х.
Тогда —
АС = х+14 см.
▸Площадь ромба равна половине произведения его диагоналей◂
То есть —
Подставим в формулу известные нам значения —
Решаем полученное квадратное уравнение —
Ищем корни —
Как видим, корень х₁ не подходит, так как длина отрезка не может выражаться отрицательным числом.
Поэтому, BD = х = 10 см.
ответ:10 см.
625=х^2+x^2+10x+25
2x^2+10x-600=0
x^2+5x-300=0
x=15 (см.) - розмір одного катета. x=-20 не задовільняє задачу.
20 см. - розмір іншого катета.
Звідси периметр становить 45+15=60 (см.)
б). х - коэфіціент пропорційності.
За т. Піфагора: корінь із 9х^2+16х^2=корінь із 25х^2=5x - гіпотенуза трикутника.
Звідси периметр становить: 7х+5x=60
12х=60
х=5
Отже гіпотенуза становить 5х=5*5=25.