ДАНО
c = 5 см - образующая конуса
D = 4 см - диаметр основания.
r= 1 см - диаметр шарика.
НАЙТИ
N =? - число шариков.
РЕШЕНИЕ
Объем конуса по высоте и радиусу основания по формуле:
V = 1/3*π*R²*H
Находим высоту конуса - H по теореме Пифагора.
b = R = D/2 = 4/2 = 2 см -
1) a² = 5² - 2² = 25 - 4 = 21
2) H = a = √21 - высота конуса.
Объем конуса
3) V1 = 1/3*π*4*√21= 4/3*√21*π см³ - объем конуса превращаем в шарики.
Объем шара по формуле - R = 1.
V2 = 4/3*π*R³ = 4/3*π
Находим число полученных шариков - делением.
N = V1 : V2 = √21 ≈ 4.6 ≈ 4 шт - шариков - ОТВЕТ
И еще 0,58 шарика останется
Если из центра окружности (который лежит на гипотенузе) опустить перпендикуляры на катеты, то получится квадрат и два треугольника, подобных исходному. Если обозначить радиус окружности r, больший катет большего треугольника b, меньший катет меньшего треугольника a,
то стороны исходного треугольника будут такие
(a + r, b + r, 35)
стороны меньшего треугольника
(a, r, 15)
стороны большего
(r, b, 20)
и все эти три треугольника подобны между собой.
отсюда a/r = 15/20 = 3/4;
то есть все эти три треугольника - египетские (подобные треугольнику со сторонами 3, 4, 5)
То есть уже можно написать ответ :) вычислять уже ничего не надо, надо просто "подобрать" коэффициенты подобия, чтобы гипотенузы египетских треугольников были бы 15 и 20. Само собой, это 3 и 4.
То есть a = 9, r = 12, b = 16; (получились треугольники 9, 12, 15 и 12, 16, 20)
Исходный треугольник имеет стороны 21, 28, 35, его площадь 294;
длина полуокружности πr = 12π;
Весь "трюк" в том, что r - одновременно больший катет в одном из подобных треугольников и меньший - в другом.