М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
wormer221
wormer221
12.10.2020 18:17 •  Геометрия

Площадь диагонального сечения куба равна 1002–√ см2. Вычисли:
a) длину диагонали куба;
b) площадь поверхности куба;
c) объём куба.

👇
Ответ:
Zayka1231
Zayka1231
12.10.2020
Для решения данной задачи нам понадобится использовать формулы, связанные с кубом.

a) Длина диагонали куба:
Для начала нам необходимо найти длину стороны куба. Обозначим ее через "а".
Искомая площадь диагонального сечения равна 1002 - √ см².
Мы знаем, что площадь диагонального сечения равна половине произведения длины стороны куба на длину его диагонали.
То есть, площадь диагонального сечения = (1/2) * a * длина диагонали.
Подставляя известные значения, получаем уравнение: 1002 - √ см² = (1/2) * a * длина диагонали.
Также нам известно, что длина диагонали равна √(2) * a.
Подставляем эту формулу в уравнение: 1002 - √ см² = (1/2) * a * √(2) * a.
Раскрываем скобки и приводим подобные члены: 1002 - √ см² = (1/2) * √(2) * a².
Домножаем обе части уравнения на 2, чтобы избавиться от дроби: 2 * (1002 - √ см²) = √(2) * a².
Теперь избавляемся от квадратного корня, возводя обе части уравнения в квадрат: (2 * (1002 - √ см²))² = (√(2) * a²)².
Раскрываем скобки и приводим подобные члены: 4 * (1002 - √ см²)² = (2 * a²).
Делим обе части уравнения на 4: (1002 - √ см²)² = (a²)/2.
Извлекаем квадратный корень из обеих частей уравнения: 1002 - √ см² = √((a²)/2).
Теперь изолируем неизвестное "а" в уравнении:
√ см² = 1002 - √((a²)/2).
√((a²)/2) = √ см² - 1002.
Возводим обе части уравнения в квадрат: (a²)/2 = (√ см² - 1002)².
Раскрываем скобки: (a²)/2 = (√ см²)² - 2 * 1002 * √ см² + 1002².
Упрощаем: (a²)/2 = см² - 2004 * √ см² + 1002².
Теперь перемножаем все члены уравнения на 2, чтобы избавиться от дроби: a² = 2 * см² - 4008 * √ см² + 2 * 1002².
И, наконец, получаем уравнение, относительно "а": a² = 2 * (см² - 2004 * √ см² + 1002²).
Теперь мы можем найти квадрат стороны куба, подставив вместо "см" известное значение площади диагонального сечения.

b) Площадь поверхности куба:
Площадь поверхности куба состоит из шести квадратных граней одинаковой площади. Так как в задаче нам уже дана площадь диагонального сечения, то она соответствует площади одной из граней куба.
Тогда площадь поверхности куба будет равна: 6 * площадь одной грани = 6 * (1002 - √ см²) см².

c) Объем куба:
Объем куба определяется формулой a³, где "а" - длина стороны куба. Мы уже рассчитали квадрат стороны куба в пункте "a", теперь найдем его значение, извлекая квадратный корень из полученного уравнения.

Итак, применяя все рассмотренные формулы к данной задаче, мы сможем решить ее и найти все известные величины: длину диагонали куба, площадь поверхности куба и объем куба.
4,8(14 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ