1)Если периметр 12 см, то длина каждой стороны будет (12/4)=3 мм.
Тупой угол 120 гр. Тогда острый=60 градусов. Диагональ ромба делит угол пополам. Значит, получим 4 равных треугольника с острым углом 30 гр. А катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Таким образом, катет будет (3/2)=1,5 мм. Второй катет по т.Пифагора можно найти.
Теперь легко вычислить площадь прямоугольного треугольника (S=1/2*a*b), а площадь ромба будет равна 4 площадям треугольника.
Дерзайте с вычислениями!
Задание 1.
а) По двум катетам
б) По катету и гипотенузе
в) По катету и острому углу
г) По гипотенузе и острому углу
Задание 2.
Первая фигура - прямоугольник. Как известно, противолежащие стороны прямоугольника равны.
Из рисунка видно, что стороны прямоугольника являются катетами треугольников ABD и BCD. Значит, эти треугольники равны по двум катетам.
Вторая фигура - равнобедренный треугольник, так как углы при основании равны (по условию). Углы PKS и RKS - смежные(их сумма равна 180°) и тоже равны (по условию). Тогда угол PKS=RKS=90°, а значит, отрезок SK будет являться высотой треугольника PSR.
В равнобедренном треугольнике высота является и медианой (по свойству равнобедренного треугольника). Значит, PK=KR. Тогда треугольники PKS и RKS - равные (по катету и острому углу).