Получается ,что известная высота(12) пересекает прямую содержащую сторону (14) за пределами стороны ,потому как(по Пифагору стороны 12 и 21 являются сторонами прямоугольного треугольника ) 21*21-12*12=297,корень кв. приблизительно 17,2 .Думаю заданный параллелограмм имеет очень острый угол при основании у одной вершины и очень тупой при второй ,это о том ,что касается чертежа(вида параллелограмма). Теперь по искомой высоте H=14*sin угла при основании .sin=12/21 .H=14*(12/21)=8 см.Через arcsin можно узнать величины углов ,это 35 и 145 гр. соответственно .
1. відповідь: а) р=36cм; б) s=24sqrt(3)см^2. а) знайдемо третю сторону за теоремою косинусів: с^2=a^2+b^2-2ab*cos(c)=16^2+6^2-2*16*6*cos(60градусів) =196 c=sqrt(196)=14. тому p=a+b+c=16+6+14=36. б) знайдемо площу за формулою: s=(ab*sin(c))/2=(16*6*sin(60градусів)) /2=24sqrt(3). 2. відповідь: сторона=4см, площа=16см^2. площа круга дорівнює pi*r^2. тому r=sqrt(8). сторона квадрата, вписаного в коло, дорівнює sqrt(2)*r= sqrt(2)*sqrt(8)=4. відповідно площа квадрата дорівнює 4^2=16. 3. відповідь: 384см^2. довжина першого катета дорівнює 12+20=32. бісектриса ділить сторону трикутника на відрізки, що відносяться як 2 інші сторони. тому (другий катет): (гіпотенуза) =12: 20=3: 5. нехай другий катет дорівнює 3х і гіпотенуза дорівнює 5х. тоді, за теоремою піфагора, (3х) ^2+32^2=(5х) ^2 16x^2=1024 x=8. тому другий катет дорівнює 3*8=24. площа прямокутного трикутника дорівнює половині добутку його катетів: s=32*24/2=384.
48°;
90°;
42°;
Объяснение:
в прямоугольном треугольнике один угол должен быть 90°
Угол В=48° (по условию)
сумма всех углов треугольника 180°
зная два угла,можем найти третий.
угол 3= 180°-90°-48°=42°