Угол АВО = угол ОВС; угол АСО = угол ОСВ потому что ОВ и ОС - биссектрисы. Но поскольку ВМ=МО, то треугольник ВОМ равнобедренный, и угол МВО = угол МОВ. И, получается, угол МОВ = угол ОВС, а значит, отрезок ОМ параллелен ВС (накрест лежащие углы равны). Аналогично раз CN=ON, то угол NOC = угол NCO, и отрезок NO параллелен ВС. А раз оба отрезка параллельны ВС, то и между собой они параллельны, а поскольку они проходят через одну точку, значит, лежат на одной прямой. Следовательно, точки M, O и N лежат на одной прямой.
85+5√119см²
Объяснение:
Дано:
ABCA1B1C1- прямая призма.
∆А1В1С1- прямоугольный.
А1В1=5см
А1С1=12см.
Sбок=?
Решение.
По теореме Пифагора найдем второй катет ∆А1В1С1
С1В1²=А1С1²-А1В1²=12²-5²=144-25=119 см
С1В1=√119 см
√25>√119
5>√119 значит
АВА1В1- является квадрат.
А1В1=В1В=АВ=АА1=5см.
ВВ1=5см высота призмы.
Формула нахождения площади боковой поверхности призмы.
Sбок=Росн*h, где Росн- периметр основания, h=BB1 - высота.
Росн=А1В1+В1С1+А1С1=12+5+√119=
=17+√119 см периметр треугольника.
Sбок=(17+√119)*5=85+5√119 см² площадь боковой поверхности призмы.