Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а. Доказать: а - касательная к окружности. Доказательство: Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности. Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
Геометрические фигуры в архитектуре Ни один из видов искусств так тесно не связан с геометрией как архитектура. Ле Корбюзье считал геометрию тем замечательным инструментом, который позволяет установить порядок в пространстве. Фигуры, которые он упоминает, являются теми математическими моделями, на базе которых строятся архитектурные формы. Чаще всего в архитектурном сооружении сочетаются различные геометрические фигуры. Например, в башне Московского кремля в основании можно увидеть прямой параллелепипед, переходящий в средней части в фигуру, приближающуюся к цилиндру, завершается же она пирамидой. Конечно, можно говорить о соответствии архитектурных форм указанным геометрическим только приближенно, отвлекаясь от мелких деталей.
Задача: Треугольник ABC и DEF — равнобедренные. AB || DE. Определить величину угла PHF.
Т.к. ΔABC равнобедренный (AB = BC), имея угол ABC, равный 80°, определим углы при основе AC:
∠BAC = ∠BCA = (180−80)/2 = 100/2 = 50°
∠BAC = ∠EDF = 50° — как соответственные при параллельных прямых AB и DE и секущей AF.
Т.к. ΔDEF равнобедренный (DE = EF), ∠EDF = ∠EFD = 50°.
Р-м ΔHFP:
∠FPH = 90°, PFH = 50° ⇒
⇒ ∠PHF = 180−∠FPH−∠PFH = 180−90−50 = 40°
ответ: Величина угла PHF равна 40°.