2) Если периметр ромба равен 32 см, то сторона ромба равна 32 : 4 = 8 см. Высота ромба на 1,7 см меньше чем сторона значит H = 8 - 1, 7 = 6,3 см Площадь ромба равна произведению стороны ромба и его высоты, то есть S = 8 * 6,3 = 50,4 см²
3) Площадь паралелограмма равна произведению стороны на высоту проведённую к этой стороне. С одной стороны площадь параллелограмма равна S = 16 * 5,9 Но с другой стороны площадь этого параллелограмма можно вычислить и так S = 4 * h Приравняем правые части этих равенств 4 * h = 16 * 5,9 h = 4 * 5,9 = 23,6 см Дополнительный вопрос: ответ - НЕТ
4) Площадь параллелограмма будет равна произведению AD на BK S = AD * BK = 7 * 3 = 21 см²
Проведем высоту ромба АН.М - точка пересечения этой высоты с диагональю DB. <АМВ=<KDB (как соответственные при параллельных прямых КD и АН и секущей DB. <AMB=<DMH как вертикальные. Следовательно, нам надо найти синус угла DMH в прямоугольном треугольнике DHM. Диагональ ромба делит его углы пополам. Пусть <MDH=α. Тогда острый угол ромба равен 2α. Нам дано, что Sin2α=0,6. Sin2α=2SinαCosα. SinαCosα=0,3. Sin²αCos²α=0,09. Cos²α=1-Sin²α. Sin²α(1-Sin²α)=0,09. Пусть Sin²α=Х. Тогда Х²-Х+0,09=0. Находим корни этого квадратного уравнения: D=√(1-4*0,09)=0,8 Х1=(1+0,8)/2=0,9. Х2=(1-0,8)/2=0,1. Итак,имеем два корня: Sin²α=0,9 и Sin²α=0,1. Тогда 1)Sinα=√0,9 ≈ 0,949; 2)Sinα=√0,1 ≈ 0,316. Вспомним, что за угол α мы приняли ПОЛОВИНУ острого угла ромба. Значит первый корень нам не подходит, так как arcsin(0,949) ≈ 71°. Итак, нас удовлетворяет ответ Sinα=√0,1. В прямоугольном треугольнике DMH: Sinα=МH/DМ=Cosβ. Значит Cosβ=Sinα=√0,1. Тогда Sinβ=√(1-Cosβ²)=√0,9 ответ: Sinβ=0,9.
Угол АОВ= 37 градусов.
Угол ОВА=углуОАВ=71,5 градуса
Объяснение:
Угол АОВ= 37 градусов.
Треугольник АОВ -равнобедренный.
Угол ОВА=углуОАВ=(180-37)/2=143/2=71,5 градуса