АВСЕ - пирамида с вершиной Е. В основании лежит правильный тр-ник, для которого радиус описанной окружности в два раза больше радиуса описанной окружности. r=R/2. ОК=ОВ/2=2а/2=а. ЕК - апофема на сторону АС. В тр-ке ЕКО ЕК²=ЕО²+ОК²=3а²+а²=4а², ЕК=2а - апофема. б) ЕК/ОК=2а/а=2. В прямоугольном треугольнике ЕОК гипотенуза ЕК вдвое больше катета ОК, значит ∠КЕО=30°, следовательно ∠ЕКО=60° - угол между боковой гранью и основанием. в) Площадь боковой поверхности: Sб=Р·l/2, где Р - периметр основания, l - апофема. R=AB/√3 ⇒ AB=R√3=2a√3. P=3AB=6a√3. Sб=6a√3·2a/2=6a²√3 (ед²).
Малая диагональ делит ромб на два треугольника так как один угол равен 60° и треугольник равнобедренный, то остальные два угла равны между собой и равны (180-60):2=60° Следовательно треугольник равносторонний и сторона ромба равна малой диагонали и равна 8см. площадь ромба состоит из суммы площадей двух одинаковых треугольников найдем площадь треугольника по формуле Герона S=√(p(p-a)(p-b)(p-c)) a, b, c - стороны треугольника p - полупериметр Р=8+8+8=24см р=24:2=12см S=√(12*4*4*4)=√(3*4*4*4*4)=16√3 S ромба равна 32√3
В основании лежит правильный тр-ник, для которого радиус описанной окружности в два раза больше радиуса описанной окружности. r=R/2.
ОК=ОВ/2=2а/2=а.
ЕК - апофема на сторону АС.
В тр-ке ЕКО ЕК²=ЕО²+ОК²=3а²+а²=4а²,
ЕК=2а - апофема.
б) ЕК/ОК=2а/а=2. В прямоугольном треугольнике ЕОК гипотенуза ЕК вдвое больше катета ОК, значит ∠КЕО=30°, следовательно ∠ЕКО=60° - угол между боковой гранью и основанием.
в) Площадь боковой поверхности: Sб=Р·l/2, где Р - периметр основания, l - апофема.
R=AB/√3 ⇒ AB=R√3=2a√3.
P=3AB=6a√3.
Sб=6a√3·2a/2=6a²√3 (ед²).