Пусть коэффициент отношений диагоналей равен х
Тогда короткая диагональ будет 2х, длинная 7х.
Половина каждой из них будет х и 3,5х соответственно.
Из прямоугольного треугольника с гипотенузой, равной стороне ромба 53:4=13,25 и катетами х и 3,5х, равными половинам диагоналей, найдем по теореме Пифагора величину х.
х²+(3,5х)²=(13,25)²
13,25х²=(13,25)²
х²=13,25
х=√13,25
2х=2√13,25
7х=7√13,25
Площадь ромба равна половине произведения его диагоналей.
S=7√13,25·2√13,25)=92,75
Высоту ромба найдем из формулы
S=h·a
S=h*13,25
h=92,75:13,25=7
Пусть коэффициент отношений диагоналей равен x.
Тогда короткая диагональ будет 2х, а длинная 7х.
Половина каждой из них будет х и 3,5х соответственно.
Из прямоугольного треугольника с гипотенузой, равное стороне ромба 53:4=13,25 и катетами х и 3,5х, равными половинами диагоналей, найдем по теореме Пифагора величину х.
x^2+(3,5х)^2=(13,25)^2
13,25x^2=(13,25)^2
x^2=13,25
x=корень из 13,25
2х=2*корень из 13,25
7х=7*корень из 13,25
Площадь ромба равна половине произведения его диагоналей.
S=7*корень из 13,25*2*корень из 13,25 = 92,75
Высоту ромба найдем по формуле:
S=h*a
S=h*13,25
h=92,75:13,25 = 7
ответ: 7.
на рисунке четреж и "сухое" решение.
Я считаю, что все 4 грани одинаковые равносторонние треугольники со стороно a, то есть это самый что ни на есть тетраэдр. :)
H - высота пирамиды,она же высота конуса. h - высота любой боковой грани.
Вписанный конус будет иметь в основании круг, вписанный в треугольник. Его радиус равен трети высоты h.
h = a*корень(3)/2;
Поэтому S = 12*корень(3)/4 = (a/2)^2*корень(3); a = 2*корень(3); h = 3, r = 1; R = 2.
H = корень(a^2 - R^2) = 2*корень(2);
Остается вычислить объем конуса.
V = (1/3)*pi*r^2*H = 2*pi*корень(2)/3
Ой... надо было площадь поверхности искать... :((( пардон, спешил...
S основания = pi^r^2 = pi.
Образующая равна апофеме, то есть h = 3 :). Пдощадь боковой поверхности
Sb = pi*h*r = 3*pi; (прикольно, пропорция та же... впрочем можно было бы сразу понять - угол наклона боковой поверхности тот же - примечание для супергеометров :)))
Полная площадь 4*pi.