АС - більша діагональ, ВД - менша.
АС - ВД = 10см
Нехай ВД = х см, АС = 10 + х см
Діагоналі перетинаються під прямим кутом і діляться навпіл.
СО = ОА = (10 + х) / 2
ВО = ОД = х/2
Розглянемо трикутника ВСО:
він прямокутний кут О = 90градусів
Застосуємо теорему Піфагора:
ВС² = ВО² + СО²
25² = ((10 + х)/2)² + (х/2)²
625 = (100 + 20х + х²)/4 + х²/4
625 = (100 + 20х + 2х²) / 4
625 = (2 * (х² + 10х + 50)) / 4
625 = (х² + 10х + 50) / 2
1250 = х² + 10х + 50
х² + 10х - 1200 =0
шукай по дискрімінанту
Д = 70²
х1 = 30, х2 = -40
х2 = -40 -незадовільняє умову (довжина не може бути відємною)
Отже ВД = 30 см, АС = 30 + 10 = 40 см
S = 1/2 * АС * ВД = 1/2 * 30 * 40 = 600 см²
Объяснение:
1.
Дано: ΔАВС.
АВ = ВС;
ВЕ - медиана;
∠АВЕ = 44°
Найти: ∠АВС; ∠FEC.
Рассмотрим ΔАВС.
АВ = ВС ⇒ ΔАВС - равнобедренный.
В равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой.⇒ ВЕ - высота и биссектриса.
∠АВЕ = ∠ЕВС = 44° (ВЕ - биссектриса)
⇒ ∠АВС = ∠АВЕ + ∠ЕВС = 44° + 44° = 88°
BF ⊥ АС (ВЕ - высота)
⇒ ∠FEC = 90°
2.
Дано: ΔАВС.
АВ = ВС; АО = ОС;
ОК - биссектриса.
Найти: ∠АОК.
Рассмотрим ΔАВС.
АВ = ВС ⇒ ΔАВС - равнобедренный.
АО = ОС ⇒ ВО - медиана.
В равнобедренном треугольнике медиана, проведенная к основанию, является высотой.⇒ ВО - высота, то есть ∠ВОС = 90°.
ОК - биссектриса ⇒ ∠ВОК = ∠КОС = 90° : 2 = 45°
∠АОК = ∠АОВ + ∠ВОК = 90° + 45° = 135°