Сторона равностороннего треугольника AC длиной 54 см является диаметром окружности. Окружность пересекается с двумя другими сторонами в точках D и E. Определи длину DE.
Пусть трапеция будет ABCD,AB=2,3 см; DC = 7,1 см; <C=45*. Проведем высоту BH, параллельную AD. Рассмотрим четырехугольник ABHD. Он - прямоугольник по признаку, так как <A,<D,<H - прямые. Имеем, что AB = DH = 2,3 см.Получаем, что НС = DC - AB = 7,1 - 2,3 = 4,8 (см) - из аксиомы 3.1. В треугольнике HBC <B = 45* из теоремы о сумме углов треугольника. Значит, так как <B = <C, то по признаку равнобедренного треугольника HBC - равнобедренный. Отсюда следует, что HB=HC = 4,8 см ответ: 4,8 см
Плоскость прямоугольника и плоскость АВК пересекаются по прямой АВ. Прямая СД принадлежит плоскости прямоугольника, но не пренадлежит плоскости АВК. Тут два варианта: либо она параллельна плоскости АВК, либо пепесекает ее. Теперь теоремма. Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельна самой этой плоскости. Так как АВСД прямоугольник, то АВ парал. СД. Поскольку АВ принадлежит плоскости АВК, то прямая СД параллельна плоскости АВК на основании теореммы о параллельности прямой и плоскости.
DE это вроде бы средняя линия треугольника следовательно DE половина AC и поэтому DE=54÷2=27 см