Определить взаимное расположении прямой и окружности, если:
1. R=16cм, d=12см
2. R=5см, d=4,2см
3. R=7,2дм, d=3,7дм
4. R=8 см, d=1,2дм
5. R=5 см, d=50мм
а) прямая и окружность не имеют общих точек;
б) прямая является касательной к окружности;
в) прямая пересекает окружность.
d-расстояние от центра окружности до прямой, R- радиус окружности С РЕШЕНИЕМ (математичка строгая )
1
a=12 b=30
боковая сторона -с
с = (b-a) / (2sin<) = (30-12) / (2*0.8) =11.25
2
дуга/полная окружность 360 град
две дуги, градусные величины которых относятся как 3:7.<это 3+7=10 частей
дуга 3 3/10*360=108 <меньшая дуга
дуга 7 7/10*360=252
Под каким углом видна хорда из точки С, принадлежащей меньшей дуге окружности?
значит угол обзора<C опирается на большую дугу 252 град
<C -вписанный равен половине дуги 252/2=126 град
3
дуга/полная окружность 360 град
три дуги, градусные величины которых относятся как 3:10:11.<это 24 части
дуга 3 3/24*360=45 <меньшая дуга <напротив вписанный угол <C
<C -вписанный равен половине дуги 45/2=22,5 град = 22 град 30 мин
4
основания a= 40 b = 42
В окружность радиуса 29 вписана трапеция , значит равнобедренная
центр окружности лежит вне трапеции. - пусть точка О
образуется два равнобедренных треугольника с вершиной в т.О и основаниями a , b
боковые стороны в треугольниках -радиусы R=29
по теореме Пифагора
высота треугольника 1
h1^2 = R^2- (a/2)^2 ; h1 = √ (R^2- (a/2)^2 )
высота треугольника 2
h2^2 = R^2- (b/2)^2 ; h1 = √ (R^2- (b/2)^2 )
значит высота трапеции
H = h1 - h2 = √ (R^2- (a/2)^2 ) - √ (R^2- (b/2)^2 ) <подставим числа
H = √ (29^2- (40/2)^2 ) - √ (29^2- (42/2)^2 ) = 1