Объяснение:
Так как угол ∠СВО=∠АДВ как внутренние разносторонние, следовательно ВС || АД. Рассмотрим ∆ВОС и ∆АОД. Поскольку
ВС || АД, то ∠ВСО=∠ДАО, ∠ВОС=∠АОД как вертикальные, АО=СО – по условию, следовательно ∆ВОС=∆АОД по второму признаку, по стороне и прилежащим к ней углам. Тогда ВО=ДО и ВС=АД.
Рассмотрим ∆АОВ и ∆СОД, у них:
1) АО=СО
2) ВО=ДО
3) ∠АОВ=∠СОД, как вертикальные
Следовательно ∆АОВ=∆СОД, тогда АВ=СД.
Так как в четырёхугольнике АВСД АВ=СД, ВС=АД, ВО=ДО, АО=СО – противоположные стороны четырёхугольника АВСД равны, а также диагонали пересекаясь, делятся пополам, значит АВСД – параллелограмм
ДОКАЗАНО
Задача встречается в таком виде:
Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость.
В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
ΔB₁C₁D: ∠C₁ = 90°,
B₁C₁ = DB₁ · sin30° = 12 · 1/2 = 6 - ребро основания
DC₁ = DB₁ · cos 30° = 12 · √3/2 = 6√3
ΔDCC₁: ∠C = 90°, по теореме Пифагора
СС₁ = √(DС₁² - DC²) = √(108 - 36) = √72 = 6√2 - высота параллелепипеда
V = Sосн·H = 6² · 6√2 = 216√2