Геометрия 10 класс Контрольная работа Тема: «Декартовы координаты в Определите вид треугольника АВС, если А(2;1;2). В(2;3;-1) и С(2;-1;-1). 2.Даны три вершины ромба А(4;-2;8), В(2;2;7) и С(4;-6;2). Найдите : 1) координаты четвертой вершины и координаты точки пересечения диагоналей ромба; 2) длины сторон и диагоналей ромба. 3.Известны координаты вершин треугольника СDE: C(-3; 4; 2), D(1; -2; 5), E(-1; -6; 4). DK- медиана треугольника СDE. Найдите длину DK и величину угла DCE. 4. В параллелограмме ABCD даны его вершины А(2;1;3), В(5;2;-1), С(-3;3;-3). Найдите координаты D(x;y;z) и в ответе запишите число, равное x+y+z. 5.Найдите площадь треугольника MNT,если M( -6;0;0), N(0;8;0),T(0;0;2).
В правильной пирамиде высота падает в центр основания, то есть в центр правильного многоугольника. Правильный четырёхугольник это квадрат, а его центр находится на пересечении диагоналей. Боковые грани правильной пирамиды это равнобедренные треугольники, которые равны. Апофема это высота боковой грани. В квадрате все стороны равны, диагонали равны и делятся точкой пересечения пополам.
Пусть P∈AD и MP⊥AD, тогда MP=17см и AP=PD т.к. в равнобедренном Δ высота является и медианой.
Пусть H∈(ABC) и MH⊥(ABC), тогда AC∩BD=H.
ΔMHP - прямоугольный, найдём неизвестный катет.
ΔAHD - равнобедренный, поэтому PH не только медиана, но и высота.
ΔHPD - прямоугольный, ∠HDP=45° т.к. диагонали квадрата являются и биссектрисами, значит HP=PD=8см - равны как катеты, прямоугольного Δ с острым углом в 45°.
AD=2·PD=2·8см=16см.
Площадь квадрата можно найти через сторону, а площадь равнобедренного треугольника через сторону и высоту опущенную на эту сторону.
S(ABCD) = AD²=16² см².
S(AMD) = MP·AD:2=17·16:2 см².
S(бок. пов.) = 4·S(AMD)=4·17·16:2 см²=2·17·16 см².
S(полн. пов.) = S(ABCD)+S(бок. пов.) = 16²см²+2·17·16 см² = 32·(8+17)см² = 8·4·25см²=800см².
ответ: 800см².