Теорема косинусов для треугольника AМC
AC^2=AM^2+MC^2-2*AM*CM*cosAMC
Теорема косинусов для треугольника BМC
BC^2=BM^2+MC^2-2*BM*CM*cosBMC
AC=BC (треугольник равносторонний) Тогда AC^2=BC^2
AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC
AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC
АМ и ВM знаем
22^2-2*22*CM*cosAMC=1010^2-2*1010*CM*cosBMC
484-44*CM*cosAMC=1020100-2020*CM*cosBMC
Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.
Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120
484-44*CM*cos120=1020100-2020*CM*cos60
484-44*CM*(-1/2)=1020100-2020*CM*1/2
484+22*CM=1020100-1010*CM
988*CM=1019616
СМ=1032
ответ: 1032
1:Сумма смежных углов = 180°
Пусть меньший угол = х, тогда больший угол = 11х
х + 11х = 180
12х = 180
х = 180 : 12
х = 15° - меньший угол
15 * 11 = 165° - больший угол
Объяснение:
2:Дано:
прямая АВ и ЕК пересекаются в точке О,
угол АОЕ + угол КОВ = 296 градусов.
Найти градусные меры угла АОЕ, угла КОВ, угла АОК и угла ЕОВ — ?
При пересечении двух прямых образуются две пары смежных углов. В свою очередь они составляют две пары равных вертикальных углов.
Следовательно угол АОЕ и угол КОВ являются вертикальными. Тогда угол АОЕ = углу КОВ = 296 : 2 = 148 градусов.
Угол АОЕ и угол АОК являются смежными. Тогда угол АОК = 180 - угол АОЕ = 180 - 148 = 32 градуса.
Угол АОК и угол ЕОВ являются вертикальными. Тогда угол АОК = углу ЕОВ = 32 градуса.
ответ: 148 градусов; 148 градусов; 32 градуса; 32 градуса.