Теорема пифагора: квадрат гипотенузы равен квадрату катетов. 1)с^2= 8^2+1^2=64+1=65 с=корень из 65 2) 12^2=10^2+b^2 144=100+b^2 b^2= 44 b= 2 корень из 11 3)диагонали при пересечении делятся пополам. получается треугольник с катетами 6 см и 8 см, а сторона ромба это гипотенуза треугольника. с^2=36+64 с^2=100. с=10 см. сторона ромба =10 см 4) диагональ прямоугольника образует со сторонами прямоугольный треугольник. с^2=36+49. с^2=85. с =корень из 85 5) в равнобедренном треугонике боковые стороны равны. s= 11×11×10=1210
Здравствуйте. Решение 1 задачи состоит в знании второго признака подобии треугольников : " Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника " то эти треугольника подобны. В первом треугольника гипотенуза будет равна 5( по теореме Пифагора) . А во втором второй катет будет 8. Как видите все катеты одного треугольника в 2 раза меньше чем у другого треугольника и аналогичная ситуация с гипотенузой. Следовательно, треугольники подобные. Решение 2 задачи состоит в том, что при правильном рисунке, можно сразу ответить на второй вопрос, а именно отношение площадей. BC и AD являются основанием двух запрашиваемых треугольников, а их отношение равно 5/2. Так как отношение равно 5/2, мы можем посчитать и сторону ВО = 25 * 2,5 = 62,5.