Очень смешная задачка, меня порадовала. Пусть точка пересечения упомянутых в условии отрезков - это точка M. Предположим, что я построил плоскость ACM. Тогда центр окружности, вписанной в треугольник BCD, лежит в этой плоскости (потому что этот центр лежит на прямой AM), и следовательно, в этой плоскости лежит биссектриса угла BCD. Точно также, в этой плоскости ACM лежит центр окружности, вписанной в треугольник ABD (как "конец" отрезка CM), и, следовательно, в плоскости ACM лежит биссектриса угла DAB. Ну, значит, эти биссектрисы имеют общую точку (конец) на отрезке BD. Что означает, в частности, что AD/AB = CD/CB; AD = AB*CD/CB = 8*7/5 = 11,2
Я кучу времени потратил, пытаясь выяснить, не являются ли стороны тетраэдра касательными к одной сфере, но это оказалось ложным следом (и неверно!)
Пусть о – центр окружности, аbсdef – данный шестиугольник сторона шестиугольника ab=а=6см. для шестиугольника радиус описанной окружности равен стороне шестиугольника r=a r=6 см центральный угол правильного шестиугольника равен 360\6=60 градусов площадь кругового сектора вычисляется по формуле sкс=pi*r^2*альфа\360 градусов где r – радиус круга, а альфа - градусная мера соответствующего угла. sкс=pi*6^2*60 градусов\360 градусов= 6*pi см^2 площадь треугольника аоb равна аb^2*корень (3)\4= =6^2 *корень (3)\4=9*корень (3) см^2 . площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой= площадь кругового сектора- площадь треугольника аос площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой (площадь меньшей части круга, на которые его делит сторона шестиугольника) = =6*pi- 9*корень (3) см^2 . ответ: 6*pi см^2, 6*pi- 9*корень (3) см^2
Пусть точка пересечения упомянутых в условии отрезков - это точка M.
Предположим, что я построил плоскость ACM.
Тогда центр окружности, вписанной в треугольник BCD, лежит в этой плоскости (потому что этот центр лежит на прямой AM), и следовательно, в этой плоскости лежит биссектриса угла BCD.
Точно также, в этой плоскости ACM лежит центр окружности, вписанной в треугольник ABD (как "конец" отрезка CM), и, следовательно, в плоскости ACM лежит биссектриса угла DAB.
Ну, значит, эти биссектрисы имеют общую точку (конец) на отрезке BD.
Что означает, в частности, что AD/AB = CD/CB;
AD = AB*CD/CB = 8*7/5 = 11,2
Я кучу времени потратил, пытаясь выяснить, не являются ли стороны тетраэдра касательными к одной сфере, но это оказалось ложным следом (и неверно!)