Дано: AB = A1B1, CH=C1H1, <CAH=<C1A1Н1. АН, А1Н1 - высоты.
Доказать: △АВС=△А1В1С1.
Док-во:
Рассмотрим △АСН и △А1С1Н1. Они прямоугольные и у них CH=C1H1 - катеты, <CAH=<C1A1Н1 - острые углы. Значит △АСН=△А1С1Н1 по 4 признаку (по катету и острому углу). => АС=А1С1, АН=А1Н1.
Рассмотрим △АВН и △А1В1Н1. Они прямоугольные и у них АН=А1Н1 - катеты, AB = A1B1 - гипотенузы. Значит △АВН=△А1В1Н1 по 2 признаку (по катету и гипотенузе). => ВН=В1Н1.
Втетрайдере давс точка р середина ад, точка f принадлежит ребру дв, причем f принадлежит дв, дf: fв=1: 3. постройти сечение тетрайдера с плоскостью проходящую через рf и || ас. найдите s сечения, если все ребра равны а. проведем в плоскости adc прямую через точку p параллельную прямой ac, полученная прямая пересекает dc в точке м. тогда pmf - искомое сечение. найдем его площадь. 1) так как df: fb = 1: 3 и df + fb = db = a, то df = 1/4 * a. pd = 1/2 * ad = 1/2 * a. так как в треугольнике adb ad = db = ab = a, значит он равносторонний и pdf = 60. тогда по теореме косинусов: pf^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 pf^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 2) в треугольнике dac pm || ac и p - середина ad => pm - средняя линия, тогда pm = 1/2 * ac = 1/2 * a и dm = 1/2 * dc = 1/2 * a 3) dm = 1/2 * a, df = 1/4 * a так как в треугольнике cdb cd = db = cb = a, значит он равносторонний и fdm = 60. тогда по теореме косинусов: fm^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 fm^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 значит искомый треугольник pmf равнобедренный fm = pf = 3^(1/2)/4 * a, dm = 1/2 * a fh2 - высота треугольника mfp (она же медиана) отсюда mh2 = 1/2 * mp = 1/2 * 1/2 * a = 1/4 * a из прямоугольного треугольника fmh2: (fm)^2 = (fh2)^2 + (mh2)^2 (fh2)^2 = (fm)^2 - (mh2)^2 (fh2)^2 = (3^(1/2)/4 * a)^2 - (1/4 * a)^2 = = 3/16 * a^2 - 1/16 * a^2 = 1/8 * a^2 => fh2 = 2^(1/2)/4 * a s mfp = 1/2 * mp * fh2 s mfp = 1/2 * 1/2 * a * 2^(1/2)/4 * a = 2^(1/2)/16 * a^2 вот так наверное.
Объяснение:
Дано: AB = A1B1, CH=C1H1, <CAH=<C1A1Н1. АН, А1Н1 - высоты.
Доказать: △АВС=△А1В1С1.
Док-во:
Рассмотрим △АСН и △А1С1Н1. Они прямоугольные и у них CH=C1H1 - катеты, <CAH=<C1A1Н1 - острые углы. Значит △АСН=△А1С1Н1 по 4 признаку (по катету и острому углу). => АС=А1С1, АН=А1Н1.
Рассмотрим △АВН и △А1В1Н1. Они прямоугольные и у них АН=А1Н1 - катеты, AB = A1B1 - гипотенузы. Значит △АВН=△А1В1Н1 по 2 признаку (по катету и гипотенузе). => ВН=В1Н1.
CH=C1H1, ВН=В1Н1, CB=CH+HB, C1B1=C1H1+H1B1 => CB=C1B1.
Таким образом для треугольников △АВС и △А1В1С1 имеем, что AB = A1B1, АС=А1С1, CB=C1B1, значит △АВС=△А1В1С1 по 3му признаку (по 3м сторонам), чтд.