Очка пересечения - т. О нарисуйте это. так будет понятнее. сначала докажем, что треугольник AOD = треульнику BOC. Есть признак равенства треугольников такой, что если две стороны одного треугольника и угол между ними равны двум сторронам и углу между ними второго треугольника, то треугольники эти равны. (BO=OD и AO=OC) а раз эти треугольники равны, значит их стороны AD и BC равны. Аналогично для треугольников AOB и COD т. е. из них стороны AB и CD равны. в итоге: в треугольниках ABC и CDA равны три стороны. Это третий признак равенства двух треугольников. (AC - это общая сторона) Всё! )
Треугольники AMC и BMC подобны. В подобных треугольниках углы попарно равны. ∠АМС=∠ВМС - по условию. ∠ВСМ≠∠АСМ в противном случае дуга АД была бы равной дуге АД, что в свою очередь ведет к равенству дуг СВД и САД. Из этого получим, что СД - диаметр окружности, перпендикулярный хорде. Тогда получим, что АМ=МВ, что противоречит условию задачи. Значит ∠ВСМ=∠САМ. Составим отношение сходственных сторон в подобных треугольниках. АС/СВ=СМ/МВ=АМ/СМ. В два последних отношения подставим известные данные, получим СМ/9=4/СМ, СМ²=36, СМ=6 Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды. АМ*МВ=СМ*МВ