Все очень просто:
Перпендикуляр, проведённый из какой-нибудь точки к прямой, меньше всякой наклонной, проведённой из той же точки к этой прямой.
Отрезок АС является перпендикуляром к прямой ОВ, а АМ — одна из наклонных, проведённых из точки А к прямой ОВ. Требуется доказать, что АМ > АС.
В /\ МАС отрезок АМ является гипотенузой, а гипотенуза больше каждого из катетов этого треугольника . Следовательно, АМ > АС. Так как наклонная АМ взята нами произвольно, то можно утверждать, что всякая наклонная к прямой больше перпендикуляра к этой прямой (а перпендикуляр короче всякой наклонной), если они проведены к ней из одной и той же точки.
Верно и обратное утверждение, а именно: если отрезок АС меньше всякого другого отрезка, соединяющего точку АС любой точкой прямой ОВ, то он является перпендикуляром к ОВ. В самом деле, отрезок АС не может быть наклонной к ОВ, так как тогда он не был бы самым коротким из отрезков, соединяющих точку А с точками прямой ОВ. Значит, он может быть только перпендикуляром к ОВ.
Длина перпендикуляра, опущенного из данной точки на прямую, принимается за расстояние от данной точки до этой прямой.
ВОТ КАК ТО ТАК.
1)сумма углов = 360
(угол 1 + угол 2) = (угол 3 + угол 4)=360/2=180
по условию усли (угол 1)=х, то (угол 2)=3*х.
Следовательно: х+3*х=180; х=4 - углы 1 и 3; 3*45=135 - углы 2 и 4.
2)Периметр=2*(a+b).
По условию если сторона1=х, то сторона2=х+4.
следовательно: 2*(х+х+4)=36; 2х=18; х=7 - сторона1 и сторона3; 7+4=11 - сторона2 и сторона4.
3)Т.к. в параллелограмме угол1=30, то противоположный ему угол3=30. а угол2=угол4=(360-2*30)/2=150.
проведем из угла б перпендикуляр BH к СD, угол CBD=180-30-90=60. Напротив угла в 30 градусов лежит катет равный половине гипотенузы.
Следовательно сторона BC=8*2=16 и сторона AD=16.
Т.к. Периметр=2*(a+b)=52, то a+b=26. Следовательно стороны AB=СD=26-16=10.