ответ: стороны треугольника 13; 14; 15
Объяснение: проведенные отрезки - это биссектрисы данного треугольника (центр вписанной окружности - точка пересечения биссектрис треугольника);
получившиеся треугольники имеют равные высоты - это радиус вписанной окружности (любая точка биссектрисы угла равноудалена от сторон угла; радиус, проведенный в точку касания перпендикулярен касательной)
площади треугольников, имеющих равные высоты относятся как основания; получим отношения сторон треугольника (для определенности обозначим сторону (а) у треугольника с площадью 30; сторона (b) у треугольника площадью 28; (с) для площади 26):
а/b = 30/28 = 15/14
a/c = 30/26 = 15/13
b/c = 28/26 = 14/13
можно записать три стороны:
a = 15c/13; b = 14c/13 и с.
площадь всего треугольника = 30+28+26 = 84 и она связана со сторонами по формуле Герона)
полупериметр = ((15/13)+(14/13)+1)*(c/2) = 21c/13
84 = корень из((21с/13)*(6c/13)*(7c/13)*(8c/13))
84 = 7*3*4*c^2/169
c^2 = 169
c = 13
b = 14
a = 15
Сумма углов треугольника равна 180°.
В △KLM:
∠K+∠L+∠M = 180°;
∠L = 180°-(∠K+∠M);
∠L = 180°-(75°+35°);
∠L = 180°-110° = 70°.
∠CLM = ∠KLM:2 = 70°:2 = 35°, как угол при биссектрисе LC ∠KLM.
Рассмотрим △LCM:
∠CLM = 35° = ∠CML;
△LCM - равнобедренный т.к. два его угла равны между собой, что и требовалось доказать.
б)
Сумма углов треугольника равна 180°.
В △LCM:
∠L+∠C+∠M = 180°;
∠C = 180°-(∠L+∠M);
∠C = 180°-(35°+35°);
∠C = 180°-70° = 110°;
В треугольнике напротив большего угла лежит большая сторона.
∠С = 110°, напротив сторона LM;
∠M = 35°, напротив сторона LC;
∠C > ∠M ⇒ LM > LC.
ответ: LM > LC.