Напишите какие истерики,части света океаны ,моря Вы увидели на рисунке 4 стр 10,на карте «Мир по Птолемею»,которые обозначены на карте полушарий вашего атласа 5 класс география
Из условия задачи следует, что угол при основании треугольника АВС равен 30 град. Обозначим сторону равнобедренного треугольника через а, основание через b, радиус описанной окружности через R. Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3) Известно, что: R=a^2/sqr(4a^2-b^2) Подставив значение b, получим: R=a Отсюда: АВ=2 см Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда: r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.
В сечении - шестиугольник, две стороны "а" которого F1А1 и ДС являются рёбрами призмы длиной по 5. 4 остальные стороны - следы сечения боковых граней призмы. Они равны √(5²+(11/2)²) = √(25+30,25) = √55,25. Высота шестиугольника равна √(АС²+СС1²) = √((2acos30°)²+11²) = = √((2*5*(√3/2))² + 121) = √(75+121) = √196 = 14. Площадь шестиугольника S равна сумме площадей прямоугольника S1 и двух треугольников, площадь S2 которых можно найти по формуле Герона. S1 = 5*14 = 70. S2 = 2√(p(p-a)(p-b)(p-c), где р - полупериметр, равный (а+в+с)/2 = = (14+2*√55,25)/2 = 7+√55,25 ≈ 14,43303. Тогда S2 = 2*17,5 = 35. ответ: S = 70 + 35 = 105.